首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Field theoretical Lie symmetry analysis: The Moebius group, exact solutions of conformal autonomous systems, and predictive model-building
【24h】

Field theoretical Lie symmetry analysis: The Moebius group, exact solutions of conformal autonomous systems, and predictive model-building

机译:现场理论李对称性分析:Moebius群,共形自主系统的精确解和预测模型的建立

获取原文
获取原文并翻译 | 示例

摘要

We study single and coupled first-order differential equations (ODEs) that admit symmetries with tangent vector fields, which satisfy the N-dimensional Cauchy-Riemann equa tions. In the two-dimensional case, classes of first-order ODEs which are invariant under Mobius transformations are explored. In the N dimensional case we outline a symmetry analysis method for constructing exact solutions for conformal autonomous systems. A very important aspect of this work is that we propose to extend the traditional technical usage of Lie groups to one that could provide testable predictions and guidelines for model-building and model-validation. The Lie symmetries in this paper are constrained and classified by field theoretical considerations and their phenomenological implications. Our results indicate that conformal transformations are appropriate for elucidating a variety of linear and nonlinear systems which could be used for, or inspire, future applications. The presentation is pragmatic and it is addressed to a wide audience.
机译:我们研究满足正切矢量场对称性且满足N维Cauchy-Riemann方程的一阶和耦合一阶微分方程(ODE)。在二维情况下,研究了在Mobius变换下不变的一阶ODE的类别。在N维情况下,我们概述了用于构造共形自主系统精确解的对称分析方法。这项工作的一个非常重要的方面是,我们建议将Lie组的传统技术用法扩展到可以为模型构建和模型验证提供可检验的预测和指导的方法。本文的Lie对称性受田野理论考虑及其现象学意义的约束和分类。我们的结果表明,共形变换适用于阐明可用于或启发未来应用的各种线性和非线性系统。该演示文稿务实,面向广大听众。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号