首页> 外文期刊>Cloud Computing, IEEE Transactions on >Cost-Efficient Tasks and Data Co-Scheduling with AffordHadoop
【24h】

Cost-Efficient Tasks and Data Co-Scheduling with AffordHadoop

机译:具有成本效益的任务和与AffordHadoop的数据协同调度

获取原文
获取原文并翻译 | 示例

摘要

With today's massive jobs spanning thousands of tasks each, cost-optimality has become more important than ever. Modern distributed data processing paradigms can be significantly more sensitive to cost than makespan, especially for long jobs deployed in commercial clouds. This paper posits that minimized dollar costs can not be achieved unless data and tasks are scheduled simultaneously. In this paper, we introduce the problem of cost-efficient co-scheduling for highly data-intensive jobs in cloud, such as MapReduce. We show that while the problem is polynomial in some cases, its general problem is NP-Hard. We propose to tackle the problem by using integer programming techniques coupled with heuristic reduction and optimization to enable a near-realtime solution. AffordHadoop, a pluggable co-scheduler for Hadoop, is implemented as an example of such a co-scheduler. AffordHadoop can save up to 48 percent of the overall dollar costs when compared to existing schedulers and provides significant flexibility in fine-tuning the cost-performance tradeoff.
机译:随着当今繁重的工作每个任务都涉及数千个任务,成本优化比以往任何时候都更加重要。与分布式计算相比,现代分布式数据处理范例对成本的敏感度更高,尤其是对于部署在商业云中的长期工作而言。本文假设,除非同时安排数据和任务,否则无法实现将美元成本降至最低的目的。在本文中,我们介绍了针对云中高度数据密集型作业(例如MapReduce)的经济高效的协同调度问题。我们表明,尽管在某些情况下该问题是多项式,但其一般问题是NP-Hard。我们建议通过使用整数编程技术结合启发式归约和优化来解决该问题,以实现接近实时的解决方案。 AffordHadoop是Hadoop的可插拔协同调度器,它是此类协同调度器的示例。与现有的调度程序相比,AffordHadoop可以节省高达48%的总美元成本,并在微调成本效益折衷方面提供了极大的灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号