首页> 外文期刊>Circuits, systems, and signal processing >Particle Swarm Optimization with Aging Leader and Challengers for Optimal Design of Analog Active Filters
【24h】

Particle Swarm Optimization with Aging Leader and Challengers for Optimal Design of Analog Active Filters

机译:具有老化领导者和挑战者的粒子群算法,用于模拟有源滤波器的优化设计

获取原文
获取原文并翻译 | 示例

摘要

Due to the manufacturing limitations, the task of optimal analog active filter design by hand is very difficult. Evolutionary computation may be a competent implement for automatic selection of optimal discrete component values such as resistors and capacitors for analog active filter design. This paper presents an efficient approach for optimal analog filter design considering different topologies and manufacturing series by selecting their component values. The evolutionary optimization technique used is particle swarm optimization (PSO) with Aging Leader and Challenger (ALC-PSO). ALC-PSO performs the dual-task of efficiently selecting the component values as well as minimizing the total design errors of low pass active filters. The component values of the filters are selected in such a way so that they become E12/E24/E96 series compatible. The simulation results prove that ALC-PSO efficiently minimizes the total design error with respect to previously used optimization techniques.
机译:由于制造限制,手工进行最佳模拟有源滤波器的任务非常困难。进化计算可能是自动选择最佳离散分量值(例如用于模拟有源滤波器设计的电阻器和电容器)的有效工具。本文提出了一种有效的方法,可通过选择不同的拓扑结构和制造系列来选择不同的元件值,从而优化模拟滤波器的设计。所使用的进化优化技术是带有老化领导者和挑战者(ALC-PSO)的粒子群优化(PSO)。 ALC-PSO执行双重任务,即有效选择组件值以及最大程度地降低低通有源滤波器的总设计误差。选择过滤器的组件值,使其与E12 / E24 / E96系列兼容。仿真结果证明,相对于以前使用的优化技术,ALC-PSO有效地使总设计误差最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号