首页> 外文期刊>Circuits, systems, and signal processing >Robust Set-Membership Affine Projection Algorithm with Coefficient Vector Reuse
【24h】

Robust Set-Membership Affine Projection Algorithm with Coefficient Vector Reuse

机译:具有系数向量重用的鲁棒集成员仿射投影算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a robust set-membership affine projection algorithm with coefficient vector reuse (RSM-APA-CVR) for high background noise environment. In the proposed algorithm, the sum of the squared norms of the differences between the updated weight vector and past weight vectors is minimized and a new robust error bound is designed. Simulation results in acoustic echo cancellation context show that the proposed algorithm has faster convergence rate and smaller steady-state misalignment as compared to the conventional RSM-APA.
机译:针对高背景噪声环境,提出了一种具有系数向量重用的鲁棒集合成员仿射投影算法(RSM-APA-CVR)。在所提出的算法中,最小化了更新后的权向量和过去权向量之间的差的平方范数之和,并设计了一个新的鲁棒误差界限。在声学回声消除环境中的仿真结果表明,与传统的RSM-APA相比,该算法具有更快的收敛速度和较小的稳态失准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号