首页> 外文期刊>Circuits, systems, and signal processing >Design and Analysis of Cascaded LMS Adaptive Filters for Noise Cancellation
【24h】

Design and Analysis of Cascaded LMS Adaptive Filters for Noise Cancellation

机译:级联LMS自适应滤波器的设计与分析。

获取原文
获取原文并翻译 | 示例

摘要

Adaptive filters have become active research area in the field of communication system. This paper investigates the innovative concept of adaptive noise cancellation (ANC) using cascaded form of least-mean-square (LMS) adaptive filters. The concept of cascading and its algorithm for real-time LMS-ANC are also described in detail. The model of the cascaded LMS-ANC is designed and simulated on MATLAB Simulink. The simulation model gives variation in the distinct signals of LMS-ANC like error, output and weights at various LMS filter parameters. The proposed algorithm utilizes two adaptive filters to estimate gradients accurately and results in good adaptation and performance. The objective of the present investigation is to provide solution in order to improve the performance of noise canceller in terms of filter parameters. The results are obtained with the help of adaptive algorithm with variable step size and different initial weight of filters which provides high convergence speed of error signal. This paper also includes the derivation for the convergence rate at different conditions and concludes that cascaded LMS-ANC results in higher convergence rate and better output signal as compared to single LMS-ANC. Higher signal-to-noise ratio for cascaded system is obtained for cascaded LMS-ANC as compared to that of single LMS-ANC system.
机译:自适应滤波器已成为通信系统领域的活跃研究领域。本文研究了使用级联形式的最小均方(LMS)自适应滤波器的自适应噪声消除(ANC)的创新概念。还详细描述了级联的概念及其用于实时LMS-ANC的算法。在MATLAB Simulink上设计并仿真了级联LMS-ANC的模型。仿真模型给出了LMS-ANC不同信号的变化,例如各种LMS滤波器参数下的误差,输出和权重。所提出的算法利用两个自适应滤波器来准确估计梯度,并具有良好的自适应性和性能。本研究的目的是提供一种解决方案,以在滤波器参数方面改善噪声消除器的性能。借助具有可变步长和不同初始滤波器权重的自适应算法获得了结果,从而提供了误差信号的高收敛速度。本文还包括在不同条件下的收敛速度的推导,并得出结论:与单个LMS-ANC相比,级联的LMS-ANC导致更高的收敛速度和更好的输出信号。与单个LMS-ANC系统相比,级联LMS-ANC获得了更高的级联系统信噪比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号