首页> 外文期刊>Circuits, systems, and signal processing >Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input-Output-Error Systems with Autoregressive Noise
【24h】

Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input-Output-Error Systems with Autoregressive Noise

机译:具有自回归噪声的多输入输出误差系统的递推迭代最小二乘参数估计算法

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the parameter estimation of a multiple-input-output-error system with autoregressive noise. In order to solve the problem of the information vector containing unknown inner variables, an auxiliary model-based recursive generalized least squares algorithm and a least squares-based iterative algorithm are proposed according to the auxiliary model identification idea and the iterative search principle. The simulation results indicate that the least squares-based iterative algorithm can generate more accurate parameter estimates than the auxiliary model-based recursive generalized least squares algorithm. Two examples are given to test the proposed algorithms.
机译:本文考虑了具有自回归噪声的多输入输出误差系统的参数估计。为了解决信息向量包含未知内部变量的问题,根据辅助模型识别思想和迭代搜索原理,提出了基于辅助模型的递归广义最小二乘算法和基于最小二乘的迭代算法。仿真结果表明,与基于辅助模型的递归广义最小二乘算法相比,基于最小二乘的迭代算法可以生成更准确的参数估计。给出了两个例子来测试所提出的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号