首页> 外文期刊>Circuits, systems and signal processing >Weighted Sigmoid-Based Frequency-Selective Noise Filtering for Speech Denoising
【24h】

Weighted Sigmoid-Based Frequency-Selective Noise Filtering for Speech Denoising

机译:基于加权的基于Sigmoid的频率选择性噪声滤波,用于语音去噪

获取原文
获取原文并翻译 | 示例

摘要

Estimation of noise often has a major impact on the quality of enhanced signal, especially when it comes in speech enhancement applications. The non-stationary noise statistics vary with time, making decision of speech active/inactive frame is however difficult. Further, since there is no prior information of noise distribution, the estimators use the recursive averaging with a fixed smoothing coefficient ranging from 0.70 to 0.99. This fixed smoothing coefficient actually correlates the previous frames of noise statistics. Unfortunately, using fixed smoothing coefficient, the estimator treats both speech active/inactive frames equally which may cause the leakage of speech/noise power and results in loss of speech intelligibility. To address this problem and to increase the noise estimation accuracy, this paper proposes a posteriori SNR and frequency dependent adaptive smoothing coefficient. Further, this paper investigates the performance of proposed weighted sigmoid function (WSIG) noise estimator. From both objective and subjective quality assessments, it is clearly evident that the proposed noise estimator yields considerably better tracking of noise spectral variations compared to the existing state of the art methods.
机译:噪声估计通常对增强信号的质量产生重大影响,尤其是在语音增强应用中时。然而,非静止噪声统计随时间而变化,难以做出语音激活/非活动帧的决定。此外,由于没有噪声分布的先前信息,因此估算器使用递归平均,其固定平滑系数范围为0.70至0.99。这种固定平滑系数实际上将先前的噪声统计帧相关联。遗憾的是,使用固定平滑系数,估计器同样地处理两个语音主动/非活动帧,这可能导致语音/噪声功率的泄漏并导致语音可懂度丢失。为了解决这个问题并提高噪声估计准确性,本文提出了后验SNR和频率相关的自适应平滑系数。此外,本文研究了所提出的加权SIGMOID函数(WSIG)噪声估计器的性能。从目标和主观质量评估,显然,与现有技术的现有技术相比,所提出的噪声估计器产生的噪声估计变化产生了相当更好的跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号