首页> 外文期刊>IEEE Transactions on Signal Processing >Stochastic Gradient-Based Implementation of Spatially Preprocessed Speech Distortion Weighted Multichannel Wiener Filtering for Noise Reduction in Hearing Aids
【24h】

Stochastic Gradient-Based Implementation of Spatially Preprocessed Speech Distortion Weighted Multichannel Wiener Filtering for Noise Reduction in Hearing Aids

机译:基于随机梯度的空间预处理语音失真加权多通道维纳滤波实现助听器降噪

获取原文
获取原文并翻译 | 示例

摘要

Recently, a generalized noise reduction scheme has been proposed, called the Spatially Preprocessed, Speech Distortion Weighted, Multichannel Wiener Filter (SP-SDW-MWF). It encompasses the Generalized Sidelobe Canceller (GSC) and a multichannel Wiener filtering technique as extreme cases. Compared with the widely studied GSC with Quadratic Inequality Constraint (QIC-GSC), the SP-SDW-MWF achieves a better noise reduction performance for a given maximum speech distortion level. In this paper, we develop a low-cost, stochastic gradient implementation of the SP-SDW-MWF. To speed up convergence and reduce computational complexity, the algorithm is implemented in the frequency domain. Experimental results with a behind-the-ear hearing aid show that the proposed frequency-domain stochastic gradient algorithm preserves the benefit of the exact SP-SDW-MWF over the QIC-GSC, while its computational cost is comparable to the least mean square-based scaled projection algorithm for QIC-GSC.
机译:最近,提出了一种通用的降噪方案,称为空间预处理,语音失真加权多通道维纳滤波器(SP-SDW-MWF)。极端情况下,它包括通用旁瓣消除器(GSC)和多通道维纳滤波技术。与广泛研究的具有二次不等式约束的GSC(QIC-GSC)相比,SP-SDW-MWF在给定的最大语音失真水平下实现了更好的降噪性能。在本文中,我们开发了SP-SDW-MWF的低成本,随机梯度实现。为了加快收敛速度​​并降低计算复杂度,该算法在频域中实现。耳后助听器的实验结果表明,与QIC-GSC相比,拟议的频域随机梯度算法保留了精确SP-SDW-MWF的优势,而其计算成本可与最小均方差相比。基于QIC-GSC的缩放投影算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号