首页> 外文期刊>Circuits, systems, and signal processing >Glottal Activity Detection from the Speech Signal Using Multifractal Analysis
【24h】

Glottal Activity Detection from the Speech Signal Using Multifractal Analysis

机译:使用多法分析从语音信号检测的声门活动

获取原文
获取原文并翻译 | 示例

摘要

This work proposes a novel method for the detection of glottal activity regions from the speech signal. Glottal activity detection refers to the problem of discriminating voiced and unvoiced segments of the speech signal. This is a fundamental step in the work flow of many speech processing applications. Much of the existing approaches for voiced/unvoiced detection are based on linear measures though the speech is produced from an underlying nonlinear process. The present work solves the problem from a nonlinear perspective, using the framework of multifractal analysis. The fractal property of the speech signal during the production of voiced and unvoiced sounds is sought to obtain the characterization of glottal activity. The characterization is done by computing the Hurst exponent from the evaluation of the scaling property of fluctuations present in the speech signal. Experimental analysis shows that Hurst exponent varies consistently with respect to the dynamics of glottal activity. The performance of the proposed method has been evaluated on the CMU-arctic, Keele and KED-Timit databases with simultaneous electroglottogram signals. Experimental results show that the average detection accuracy or error rate of the proposed method is comparable to the best performing algorithm on clean speech signals. Besides, evaluation of the robustness of the proposed method to noise degradation shows comparable results with other methods for signal-to-noise ratio greater than 10 dB and 20 dB, respectively, for white noise and babble noise.
机译:这项工作提出了一种从语音信号检测名称活性区的新方法。声门活动检测是指辨别语音信号的浊音和无声段的问题。这是许多语音处理应用程序的工作流程中的基本步骤。浊音/清音检测的大部分方法都是基于线性措施,尽管语音是由潜在的非线性过程产生的。本工作解决了使用多重分析框架来解决非线性透视问题的问题。寻求发光活动的表征期间,语音信号在发光活动的表征中,语音信号的分形特性。表征是通过计算语音信号中存在的波动的缩放特性的评估来完成仓鼠指数来完成的。实验分析表明,赫尔斯特指数在引物活动的动态方面不断变化。已经在CMU-arctic,Keele和KED-Timit数据库中评估了所提出的方法的性能,具有同时电镜头信号。实验结果表明,该方法的平均检测精度或误差率与清洁语音信号上的最佳性能算法相当。此外,评估所提出的噪声劣化方法的稳健性显示出与其他方法的相当的结果,用于分别为10dB的信噪比和20 dB,用于白噪声和禁止噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号