首页> 外文期刊>Circuits, systems, and signal processing >Kalman Filter Reinforced by Least Mean Square for Systems with Unknown Inputs
【24h】

Kalman Filter Reinforced by Least Mean Square for Systems with Unknown Inputs

机译:最小均方增强的卡尔曼滤波器,用于输入未知的系统

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the state estimation problem of linear discrete-time time-varying stochastic systems with unknown inputs (UIs). It is shown that the globally optimal unbiased minimum-variance filters may not satisfy the minimum-variance property, and hence they cannot eliminate noises appropriately. If this is the case, the well-known Kalman filter may give a better solution, which however may also not be the best one due to that the imbedded unknown input model may not be practical. To remedy the filtering degradation problem, a robust filter named as the KFLMS, which has good noise rejection property for such systems, is developed in this paper, where the UI estimates are obtained by using least mean square algorithm and the state estimation is achieved via the previous proposed two-stage Kalman filtering approach. Numerical examples are provided to show the effectiveness of the proposed results. Specifically, simulation results illustrate the goodness of the new method in the sense of lower root mean square error and better noise rejection property.
机译:本文解决了具有未知输入(UI)的线性离散时间时变随机系统的状态估计问题。结果表明,全局最优无偏最小方差滤波器可能不满足最小方差性质,因此它们不能适当地消除噪声。在这种情况下,众所周知的卡尔曼滤波器可能会提供更好的解决方案,但由于嵌入的未知输入模型可能不切实际,因此可能也不是最佳解决方案。为了解决滤波降级问题,本文开发了一种鲁棒的滤波器KFLMS,该滤波器具有良好的噪声抑制性能,该系统使用最小均方算法获得UI估计,并通过以下方法实现状态估计:先前提出的两阶段卡尔曼滤波方法。数值算例表明了所提出结果的有效性。具体而言,仿真结果从较低的均方根误差和更好的噪声抑制特性的角度说明了该方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号