首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Use of two-dimensional deformable mesh structures for video coding.I. The synthesis problem: mesh-based function approximation and mapping
【24h】

Use of two-dimensional deformable mesh structures for video coding.I. The synthesis problem: mesh-based function approximation and mapping

机译:二维可变形网格结构在视频编码中的使用综合问题:基于网格的函数逼近和映射

获取原文
获取原文并翻译 | 示例

摘要

This paper explores the use of a deformable mesh (also known as the control grid) structure for motion analysis and synthesis in an image sequence. We focus on the synthesis problem, i.e., how to interpolate an image function given nodal positions and values and how to predict a present image frame from a reference one given nodal displacements between the two images. For this purpose, we review the fundamental theory and numerical techniques that have been developed in the finite element method for function approximation and mapping using a mesh structure. Specifically, we focus on (i) the use of shape functions for node-based function interpolation and mapping; and (ii) the use of regular master elements to simplify numerical calculations involved in dealing with irregular mesh structures. In addition to a general introduction that is applicable to an arbitrary mesh structure, we also present specific results for triangular and quadrilateral mesh structures, which are the most useful two-dimensional (2-D) meshes. Finally, we describe how to apply the above results for motion compensated frame prediction and interpolation. It is shown that the concepts of shape functions and master elements are crucial for developing computationally efficient algorithms for both the analysis and synthesis problems
机译:本文探讨了将可变形网格(也称为控制网格)结构用于图像序列中的运动分析和合成的方法。我们关注于合成问题,即,如何在给定节点位置和值的情况下对图像函数进行内插,以及如何根据给定的节点在两个图像之间的位移来从参考帧预测当前图像帧。为此,我们回顾了有限元方法中开发的用于使用网格结构进行函数逼近和映射的基础理论和数值技术。具体来说,我们专注于(i)使用形状函数进行基于节点的函数插值和映射; (ii)使用常规主元素简化处理不规则网格结构所涉及的数值计算。除了适用于任意网格结构的一般介绍之外,我们还介绍了三角形和四边形网格结构的特定结果,它们是最有用的二维(2-D)网格。最后,我们描述如何将以上结果用于运动补偿帧的预测和内插。结果表明,形状函数和主元素的概念对于开发用于分析和综合问题的高效计算算法至关重要

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号