首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Spectral analysis for sampling image-based rendering data
【24h】

Spectral analysis for sampling image-based rendering data

机译:光谱分析以采样基于图像的渲染数据

获取原文
获取原文并翻译 | 示例

摘要

Image-based rendering (IBR) has become a very active research area in recent years. The spectral analysis problem for IBR has not been completely solved. In this paper, we present a new method to parameterize the problem, which is applicable for general-purpose IBR spectral analysis. We notice that any plenoptic function is generated by light ray emitted/reflected/refracted from the object surface. We introduce the surface plenoptic function (SPF), which represents the light rays starting from the object surface. Given that radiance along a light ray does not change unless the light ray is blocked, SPF reduces the dimension of the original plenoptic function to 6D. We are then able to map or transform the SPF to IBR representations captured along any camera trajectory. Assuming some properties on the SPF, we can analyze the properties of IBR for generic scenes such as scenes with Lambertian or non-Lambertian surfaces and scenes with or without occlusions, and for different sampling strategies such as lightfield/concentric mosaic. We find that in most cases, even though the SPF may be band-limited, the frequency spectrum of IBR is not band-limited. We show that non-Lambertian reflections, depth variations and occlusions can all broaden the spectrum, with the latter two being more significant. SPF is defined for scenes with known geometry. When the geometry is unknown, spectral analysis is still possible. We show that with the "truncating windows" analysis and some conclusions obtained with SPF, the spectrum expansion caused by non-Lambertian reflections and occlusions can be quantatively estimated, even when the scene geometry is not explicitly known. Given the spectrum of IBR, we also study how to sample IBR data more efficiently. Our analysis is based on the generalized periodic sampling theory with arbitrary geometry. We show that the sampling efficiency can be up to twice of that when we use rectangular sampling. The advantages and disadvantages of generalized periodic sampling for IBR are also discussed.
机译:基于图像的渲染(IBR)近年来已成为非常活跃的研究领域。 IBR的光谱分析问题尚未完全解决。在本文中,我们提出了一种新的参数化方法,适用于通用IBR光谱分析。我们注意到,从物体表面发射/反射/折射的光线都会产生任何全光功能。我们介绍了表面全光函数(SPF),它表示从物体表面开始的光线。假设除非光线被阻挡,否则沿着光线的辐射不会改变,因此SPF会将原始全光功能的尺寸减小到6D。然后,我们可以将SPF映射或转换为沿任何摄像机轨迹捕获的IBR表示形式。假设SPF具有某些属性,我们可以针对通用场景(例如具有Lambertian或非Lambertian曲面的场景以及具有或不具有遮挡的场景)以及不同的采样策略(例如光场/同心镶嵌)分析IBR的属性。我们发现,在大多数情况下,即使SPF可能受到频带限制,IBR的频谱也不受频带限制。我们表明,非朗伯反射,深度变化和遮挡都可以加宽光谱,后两者更为显着。 SPF是为具有已知几何形状的场景定义的。当几何形状未知时,光谱分析仍然是可能的。我们显示,通过“截断窗口”分析以及使用SPF获得的一些结论,即使未明确知道场景几何形状,也可以定量估计由非朗伯反射和遮挡引起的频谱扩展。给定IBR的频谱,我们还将研究如何更有效地对IBR数据进行采样。我们的分析基于具有任意几何形状的广义周期采样理论。我们证明了采样效率可以达到使用矩形采样时的两倍。还讨论了IBR的广义定期采样的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号