首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Spectral analysis for sampling image-based rendering data
【24h】

Spectral analysis for sampling image-based rendering data

机译:用于采样基于图像的渲染数据的光谱分析

获取原文
获取原文并翻译 | 示例

摘要

Image-based rendering (IBR) has become a very active research area in recent years. The spectral analysis problem for IBR has not been completely solved. In this paper, we present a new method to parameterize the problem, which is applicable for general-purpose IBR spectral analysis. We notice that any plenoptic function is generated by light ray emitted/reflected/refracted from the object surface. We introduce the surface plenoptic function (SPF), which represents the light rays starting from the object surface. Given that radiance along a light ray does not change unless the light ray is blocked, SPF reduces the dimension of the original plenoptic function to 6D. We are then able to map or transform the SPF to IBR representations captured along any camera trajectory. Assuming some properties on the SPF, we can analyze the properties of IBR for generic scenes such as scenes with Lambertian or non-Lambertian surfaces and scenes with or without occlusions, and for different sampling strategies such as lightfield/concentric mosaic. We find that in most cases, even though the SPF may be band-limited, the frequency spectrum of IBR is not band-limited. We show that non-Lambertian reflections, depth variations and occlusions can all broaden the spectrum, with the latter two being more significant. SPF is defined for scenes with known geometry. When the geometry is unknown, spectral analysis is still possible. We show that with the "truncating windows" analysis and some conclusions obtained with SPF, the spectrum expansion caused by non-Lambertian reflections and occlusions can be quantatively estimated, even when the scene geometry is not explicitly known. Given the spectrum of IBR, we also study how to sample IBR data more efficiently. Our analysis is based on the generalized periodic sampling theory with arbitrary geometry. We show that the sampling efficiency can be up to twice of that when we use rectangular sampling. The advantages and disadvantages of generalized periodic sampling for IBR are also discussed.
机译:基于图像的渲染(IBR)近年来已成为一个非常活跃的研究区域。 IBR的光谱分析问题尚未完全解决。在本文中,我们提出了一种参数化问题的新方法,适用于通用IBR光谱分析。我们注意到任何通过物体表面发射/反射/折射的光线产生的任何压力函数。我们介绍了表面增压功能(SPF),其表示从物体表面开始的光线。鉴于沿着光线的辐射不会改变,除非光线被阻断,SPF将原始通链函数的尺寸降低至6D。然后,我们能够映射或将SPF映射到沿任何相机轨迹捕获的IBR表示。假设SPF上的某些属性,我们可以分析IBR的属性,以了解与Lambertian或非兰伯语表面和有或没有闭塞的场景的场景,以及诸如Liftfield /同心马赛克等不同的采样策略。我们发现,在大多数情况下,即使SPF可能是带限制,IBR的频谱也不是带带限制的。我们表明非兰伯语的反射,深度变化和闭塞都可以拓宽光谱,后者两个更为显着。 SPF定义为具有已知几何图形的场景。当几何形状未知时,仍然可以进行光谱分析。我们表明,随着“截断窗口”分析和使用SPF获得的一些结论,即使当场景几何不明确地知道,也可以量化由非灯泡反射和闭塞引起的频谱膨胀。鉴于IBR的频谱,我们还研究如何更有效地示例IBR数据。我们的分析基于具有任意几何形状的广义定期抽样理论。我们表明,当我们使用矩形采样时,采样效率可能达到两倍。还讨论了IBR广义周期性采样的优点和缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号