首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Large-Scale Concept Detection in Multimedia Data Using Small Training Sets and Cross-Domain Concept Fusion
【24h】

Large-Scale Concept Detection in Multimedia Data Using Small Training Sets and Cross-Domain Concept Fusion

机译:使用小型训练集和跨域概念融合的多媒体数据中的大规模概念检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the concept detector module developed for the VITALAS multimedia retrieval system. It outlines its architecture and major implementation aspects, including a set of procedures and tools that were used for the development of detectors for more than 500 concepts. The focus is on aspects that increase the system's scalability in terms of the number of concepts: collaborative concept definition and disambiguation, selection of small but sufficient training sets and efficient manual annotation. The proposed architecture uses cross-domain concept fusion to improve effectiveness and reduce the number of samples required for concept detector training. Two criteria are proposed for selecting the best predictors to use for fusion and their effectiveness is experimentally evaluated for 221 concepts on the TRECVID-2005 development set and 132 concepts on a set of images provided by the Belga news agency. In these experiments, cross-domain concept fusion performed better than early fusion for most concepts. Experiments with variable training set sizes also indicate that cross-domain concept fusion is more effective than early fusion when the training set size is small.
机译:本文介绍了为VITALAS多媒体检索系统开发的概念检测器模块。它概述了其体系结构和主要实现方面,包括用于开发500多个概念的检测器的一组过程和工具。重点是在概念数量方面增加系统可伸缩性的方面:协作概念定义和消歧,选择小的但足够的训练集和有效的手动注释。所提出的体系结构使用跨域概念融合来提高有效性并减少概念检测器训练所需的样本数量。提出了两个标准来选择用于融合的最佳预测器,并通过实验评估了TRECVID-2005开发集上的221个概念和Belga新闻社提供的一组图像上的132个概念的有效性。在这些实验中,对于大多数概念,跨域概念融合的性能要优于早期融合。具有可变训练集大小的实验还表明,当训练集大小较小时,跨域概念融合比早期融合更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号