首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Fast and Robust Spatially Constrained Gaussian Mixture Model for Image Segmentation
【24h】

Fast and Robust Spatially Constrained Gaussian Mixture Model for Image Segmentation

机译:快速和鲁棒的空间受限高斯混合模型用于图像分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new mixture model for image segmentation is presented. We propose a new way to incorporate spatial information between neighboring pixels into the Gaussian mixture model based on Markov random field (MRF). In comparison to other mixture models that are complex and computationally expensive, the proposed method is fast and easy to implement. In mixture models based on MRF, the M-step of the expectation-maximization (EM) algorithm cannot be directly applied to the prior distribution ${pi_{ij}}$ for maximization of the log-likelihood with respect to the corresponding parameters. Compared with these models, our proposed method directly applies the EM algorithm to optimize the parameters, which makes it much simpler. Experimental results obtained by employing the proposed method on many synthetic and real-world grayscale and colored images demonstrate its robustness, accuracy, and effectiveness, compared with other mixture models.
机译:本文提出了一种新的图像分割混合模型。我们提出了一种新方法,将基于马尔可夫随机场(MRF)的相邻像素之间的空间信息合并到高斯混合模型中。与其他复杂且计算量大的混合模型相比,该方法快速且易于实现。在基于MRF的混合模型中,期望最大化(EM)算法的M步不能直接应用于先验分布$ {pi_ {ij}} $,以使对数似然率相对于相应参数最大化。与这些模型相比,我们提出的方法直接应用了EM算法来优化参数,从而使其更加简单。与其他混合模型相比,通过在多种合成和真实世界的灰度和彩色图像上采用该方法获得的实验结果证明了该方法的鲁棒性,准确性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号