首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >Two Fast and Robust Modified Gaussian Mixture Models Incorporating Local Spatial Information for Image Segmentation
【24h】

Two Fast and Robust Modified Gaussian Mixture Models Incorporating Local Spatial Information for Image Segmentation

机译:结合局部空间信息进行图像分割的两种快速,鲁棒的改进高斯混合模型

获取原文
获取原文并翻译 | 示例

摘要

The Gaussian Mixture Model (GMM) with the spatial constraint, e.g. Hidden Markov Random Field (HMRF), has been proven effective for image segmentation. The parameter beta in the HMRF model is used to balance between robustness to noise and effectiveness of preserving the detail of the image. In other words, the determination of parameter beta is, in fact, noise dependent to some degree. In this paper, we propose a simple and effective algorithm to make the traditional Gaussian Mixture Model more robust to noise, with consideration of the relationship between the local spatial information and the pixel intensity value information. The conditional probability of an image pixel is influenced by the probabilities of pixels in its immediate neighborhood to incorporate the spatial and the intensity information. In this case, the parameter beta can be assigned to a small value to preserve image sharpness and detail in non-noise images. Meanwhile, the neighborhood window is used to tolerate the noise for heavy-noised images. Thus, the parameter beta is independent of image noise degree in our model. Furthermore, we propose another algorithm for our modified GMM (MGMM) with the simplification of conditional probability computation (MGMM_S). Finally, our algorithm is not limited to GMM - it is general enough so that it can be applied to other distributions based on the construction of the Finite Mixture Model (FMM) technique. Experimental results of synthetic and real images demonstrate the improved robustness and effectiveness of our approach.
机译:具有空间约束的高斯混合模型(GMM),例如隐马尔可夫随机场(HMRF)已被证明对图像分割有效。 HMRF模型中的参数beta用于在鲁棒性和噪声保持效果之间保持平衡。换句话说,参数β的确定实际上在某种程度上取决于噪声。在本文中,我们考虑到局部空间信息与像素强度值信息之间的关系,提出了一种简单有效的算法,使传统的高斯混合模型对噪声更加鲁棒。图像像素的条件概率受其附近像素合并空间和强度信息的概率影响。在这种情况下,可以将参数beta分配给一个较小的值,以保留非噪声图像中的图像清晰度和细节。同时,邻域窗口用于容忍高噪声图像的噪声。因此,参数β在我们的模型中与图像噪声度无关。此外,我们为简化的GMM(MGMM)提出了另一种算法,简化了条件概率计算(MGMM_S)。最后,我们的算法不限于GMM-它足够通用,因此可以基于有限混合模型(FMM)技术的构造将其应用于其他分布。合成图像和真实图像的实验结果表明,我们的方法具有更高的鲁棒性和有效性。

著录项

  • 来源
  • 作者单位

    Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China|Nanjing Univ Informat Sci & Technol, Jiangsu Engn Ctr Network Monitoring, Nanjing, Jiangsu, Peoples R China|Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada;

    JiangSu Prov Ctr Dis Prevent & Control, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China|Nanjing Univ Informat Sci & Technol, Jiangsu Engn Ctr Network Monitoring, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China|Nanjing Univ Informat Sci & Technol, Jiangsu Engn Ctr Network Monitoring, Nanjing, Jiangsu, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China|Nanjing Univ Informat Sci & Technol, Jiangsu Engn Ctr Network Monitoring, Nanjing, Jiangsu, Peoples R China;

    Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada;

    Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China|Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EM algorithm; Gaussian Mixture Model; HMRF; Image segmentation; Local information; Spatial constraints;

    机译:EM算法高斯混合模型HMRF图像分割局部信息空间约束;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号