首页> 外文期刊>Neurocomputing >A robust modified Gaussian mixture model with rough set for image segmentation
【24h】

A robust modified Gaussian mixture model with rough set for image segmentation

机译:具有粗集的鲁棒修正高斯混合模型用于图像分割

获取原文
获取原文并翻译 | 示例

摘要

Accurate image segmentation is an essential step in image processing, where Gaussian mixture models with spatial constraint play an important role and have been proven effective for image segmentation. Nevertheless, most methods suffer from one or more challenges such as limited robustness to outliers, over-smoothness for segmentations, sensitive to initializations and manually setting parameters. To address these issues and further improve the accuracy for image segmentation, in this paper, a robust modified Gaussian mixture model combining with rough set theory is proposed for image segmentation. Firstly, to make the Gaussian mixture models more robust to noise, a new spatial weight factor is constructed to replace the conditional probability of an image pixel with the calculation of the probabilities of pixels in its immediate neighborhood. Secondly, to further reduce the over-smoothness for segmentations, a novel prior factor is proposed by incorporating the spatial information amongst neighborhood pixels. Finally, each Gaussian component is characterized by three automatically determined rough regions, and accordingly the posterior probability of each pixel is estimated with respect to the region it locates. We compare our algorithm to state-of-the-art segmentation approaches in both synthetic and real images to demonstrate the superior performance of the proposed algorithm. (C) 2017 Elsevier B.V. All rights reserved.
机译:准确的图像分割是图像处理中必不可少的步骤,其中具有空间约束的高斯混合模型起着重要作用,并已被证明对图像分割有效。然而,大多数方法都面临一个或多个挑战,例如对异常值的鲁棒性有限,分段的平滑度,对初始化敏感以及手动设置参数。为了解决这些问题并进一步提高图像分割的准确性,本文提出了一种结合粗糙集理论的鲁棒改进高斯混合模型进行图像分割。首先,为了使高斯混合模型对噪声更鲁棒,构造了一个新的空间权重因子,用计算其紧邻像素的概率来代替图像像素的条件概率。其次,为了进一步减少分割的过度平滑度,通过在邻域像素之间合并空间信息,提出了一种新颖的先验因子。最后,每个高斯分量的特征在于三个自动确定的粗糙区域,因此,每个像素相对于其所定位的区域的后验概率都得到了估计。我们将我们的算法与合成和真实图像中的最新分割方法进行了比较,以证明所提出算法的优越性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第29期|550-565|共16页
  • 作者单位

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci, Shaanxi Key Lab Speech & Image Informat Proc SAII, Xian 710072, Shaanxi, Peoples R China|Northwestern Polytech Univ, Sch Comp Sci, CMCC, Xian 710072, Shaanxi, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image segmentation; Gaussian mixture model; Markov random field; Spatial information; Rough set theory; EM algorithm;

    机译:图像分割高斯混合模型马尔可夫随机场空间信息粗糙集理论EM算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号