首页> 外文期刊>Journal of visual communication & image representation >A spatially constrained generative asymmetric Gaussian mixture model for image segmentation
【24h】

A spatially constrained generative asymmetric Gaussian mixture model for image segmentation

机译:用于图像分割的空间受限生成不对称高斯混合模型

获取原文
获取原文并翻译 | 示例

摘要

Accurate image segmentation is an essential step in image processing, where Gaussian mixture models with spatial constraint play an important role. Nevertheless, most methods suffer from one or more challenges such as limited robustness to noise, over-smoothness for segmentations, and lack of flexibility to fit the observed data. To address these issues, in this paper, we propose a generative asymmetric Gaussian mixture model with spatial constraint for image segmentation. The asymmetric distribution is modified to be easily incorporated the spatial information. Then our asymmetric model can be constructed based on the posterior and prior probabilities of within-cluster and between-cluster. Based on the Kullback-Leibler divergence, we introduce two pseudo-likelihood quantities which consider the neighboring priors of within-cluster and between-cluster. Finally, we derive an expectation maximization algorithm to maximize the approximation of the data log-likelihood. We compare our algorithm with state-of-the-art segmentation approaches to demonstrate the superior performance of the proposed algorithm. (C) 2016 Elsevier Inc. All rights reserved.
机译:精确的图像分割是图像处理中必不可少的步骤,其中具有空间约束的高斯混合模型起着重要的作用。然而,大多数方法都面临一个或多个挑战,例如对噪声的鲁棒性有限,分段的平滑度过高以及缺乏适应所观察数据的灵活性。为了解决这些问题,在本文中,我们提出了一种具有空间约束的生成不对称高斯混合模型用于图像分割。修改不对称分布以容易地合并空间信息。然后,可以基于集群内和集群间的后验概率和先验概率来构造我们的非对称模型。基于Kullback-Leibler散度,我们引入了两个伪似然量,它们考虑了集群内和集群间的相邻先验。最后,我们推导出一个期望最大化算法,以最大化数据对数似然的近似值。我们将我们的算法与最新的分割方法进行比较,以证明所提出算法的优越性能。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号