首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Sparse Low-Rank Matrix Approximation for Data Compression
【24h】

Sparse Low-Rank Matrix Approximation for Data Compression

机译:数据压缩的稀疏低秩矩阵逼近

获取原文
获取原文并翻译 | 示例

摘要

Low-rank matrix approximation (LRMA) is a powerful technique for signal processing and pattern analysis. However, its potential for data compression has not yet been fully investigated. In this paper, we propose sparse LRMA (SLRMA), an effective computational tool for data compression. SLRMA extends conventional LRMA by exploring both the intra and inter coherence of data samples simultaneously. With the aid of prescribed orthogonal transforms (e.g., discrete cosine/wavelet transform and graph transform), SLRMA decomposes a matrix into a product of two smaller matrices, where one matrix is made up of extremely sparse and orthogonal column vectors and the other consists of the transform coefficients. Technically, we formulate SLRMA as a constrained optimization problem, i.e., minimizing the approximation error in the least-squares sense regularized by the ell _{0} -norm and orthogonality, and solve it using the inexact augmented Lagrangian multiplier method. Through extensive tests on real-world data, such as 2D image sets and 3D dynamic meshes, we observe that: 1) SLRMA empirically converges well; 2) SLRMA can produce approximation error comparable to LRMA but in a much sparse form; and 3) SLRMA-based compression schemes significantly outperform the state of the art in terms of rate-distortion performance.
机译:低秩矩阵逼近(LRMA)是用于信号处理和模式分析的强大技术。但是,其数据压缩的潜力尚未得到充分研究。在本文中,我们提出了稀疏LRMA(SLRMA),一种有效的数据压缩计算工具。 SLRMA通过同时探索数据样本的内部和内部相干性来扩展传统的LRMA。借助规定的正交变换(例如,离散余弦/小波变换和图形变换),SLRMA将矩阵分解为两个较小矩阵的乘积,其中一个矩阵由极稀疏和正交的列向量组成,另一个矩阵由变换系数。从技术上讲,我们将SLRMA公式化为约束优化问题,即最小化由ell _ {0}-范数和正交性规范化的最小二乘法的近似误差,并使用不精确的增强拉格朗日乘数法对其进行求解。通过对现实数据(例如2D图像集和3D动态网格)的广泛测试,我们观察到:1)SLRMA在经验上很好地收敛; 2)SLRMA可以产生与LRMA相当的近似误差,但形式非常稀疏。 3)基于SLRMA的压缩方案在速率失真性能方面明显优于现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号