首页> 外文期刊>Computers & geosciences >Random noise attenuation in seismic data using Hankel sparse low-rank approximation
【24h】

Random noise attenuation in seismic data using Hankel sparse low-rank approximation

机译:使用Hankel稀疏低秩近似的地震数据中的随机噪声衰减

获取原文
获取原文并翻译 | 示例

摘要

ABS T R A C T The Hankel matrix's low-rank property derived from the noise-free seismic data describing a few linear events and has been successively leveraged in many low-rank seismic data de-noising approaches. In such rank reduction methods, the typical scheme is to determine the best low-rank estimation of the formulated Hankel matrix, and then obtain the de-noised data. However, if the noisy data has been rearranged for the low-rank approximation in a Hankel matrix, it is usually not precisely low-rank. In the presented research, we propose a multivariate generalization of the minimax-concave penalty (MCP) function inducing sparsity on seismic data in the time-space domain. Initially obtained sparse representation of data would be decomposed into semi low-rank and the sparse components with the best approximate of noisy measurement matrix would be defined. This would be performed through the low-rank matrix extraction by optimal (re)weighting of the singular vectors of the observed matrix. The efficiency of the proposed method was evaluated on synthetic and real land data examples. Results were also compared with the state-of-art methods such as the non-local means (NLM), the Optimum Shrinkage Sparse Low-Rank estimation, the Optimum Shrinkage Synchrosqueezing Wavelet Transform and the damped rank reduction (DRR) methods. Qualitative and quantitative comparison of results approved capabilities of the proposed method compared to other selected noise attenuation method.
机译:ABS T R a C t Hankel矩阵的低秩属性来自描述少数线性事件的无噪声地震数据,并且已经连续地利用许多低级地震数据去噪方法。在这种等级降低方法中,典型方案是确定配制的Hankel矩阵的最佳低级估计,然后获得去噪数据。但是,如果在Hankel矩阵中的低秩近似被重新排列了噪声数据,则通常不恰当地低等级。在本研究中,我们提出了在时空域中地震数据上诱导稀疏性的最小凹陷(MCP)功能的多变量泛化。最初获得数据的稀疏表示将被分解为半低级,并且将定义具有最佳噪声测量矩阵的最佳近似的稀疏组件。这将通过低秩矩阵提取来通过观察到的矩阵的奇异载体的最佳(RE)加权来执行。在合成和实际数据示例中评估了所提出的方法的效率。结果也与最先进的方法(如非局部方式(NLM))进行比较,最佳收缩稀疏低秩估计,最佳收缩同步序列小波变换和阻尼等级减少(DRR)方法。与其他选定的噪声衰减方法相比,所提出的方法的结果批准能力的定性和定量比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号