首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Aggregating Attentional Dilated Features for Salient Object Detection
【24h】

Aggregating Attentional Dilated Features for Salient Object Detection

机译:聚集注意力扩张特征以获得突出物体检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel deep learning model to aggregate the attentional dilated features for salient object detection by exploring the complementary information between the global and local context in a convolutional neural network. There are two technical contributions to our network design. First, we develop an attentional dense atrous (dilated) spatial pyramid pooling (AD-ASPP) module to selectively use the local saliency cues captured by dilated convolutions with a small rate and the global saliency cues captured by dilated convolutions with a large rate. Second, taking the feature pyramid network as the backbone, we develop an aggregation network to integrate the refined features by formulating two consecutive chains of residual learning based modules: one chain from deep to shallow layers while another chain from shallow to deep layers. We evaluate our network on seven widely-used saliency detection benchmarks by comparing it against 21 state-of-the-art methods. Experimental results show that our network outperforms others on all the seven benchmark datasets.
机译:本文提出了一种新的深度学习模型,可以通过在卷积神经网络中探索全球和本地背景之间的互补信息来聚合引起的注意特征。我们的网络设计有两种技术贡献。首先,我们开发注意力密集的(扩张)空间金字塔汇集(AD-ASPP)模块,以选择性地使用通过扩张卷积捕获的局部显着性提示,并通过扩张的卷积具有大的速率来捕获的全球显着性提示。其次,将特征金字塔网络作为骨干,我们开发聚合网络通过配制基于残留的基于剩余学习的模块的两个连续链来集成精细特征:从深度到浅层的一个链,而另一个链从浅层到深层。通过将其与21个最先进的方法进行比较,我们通过与七种广泛使用的显着性检测基准进行评估我们的网络。实验结果表明,我们的网络在所有七个基准数据集中突出了其他人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号