首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Towards Effective Deep Embedding for Zero-Shot Learning
【24h】

Towards Effective Deep Embedding for Zero-Shot Learning

机译:归视零射击学习的有效嵌入

获取原文
获取原文并翻译 | 示例

摘要

Zero-shot learning (ZSL) can be formulated as a cross-domain matching problem: after being projected into a joint embedding space, a visual sample will match against all candidate class-level semantic descriptions and be assigned to the nearest class. In this process, the embedding space underpins the success of such matching and is crucial for ZSL. In this paper, we conduct an in-depth study on the construction of embedding space for ZSL and posit that an ideal embedding space should satisfy two criteria: intra-class compactness and inter-class separability. While the former encourages the embeddings of visual samples of one class to distribute tightly close to the semantic description embedding of this class, the latter requires embeddings from different classes to be well separated from each other. Towards this goal, we present a simple but effective two-branch network to simultaneously map semantic descriptions and visual samples into a joint space, on which visual embeddings are forced to regress to their class-level semantic embeddings and the embeddings crossing classes are required to be distinguishable by a trainable classifier. Furthermore, we extend our method to a transductive setting to better handle the model bias problem in ZSL (i.e., samples from unseen classes tend to be categorized into seen classes) with minimal extra supervision. Specifically, we propose a pseudo labeling strategy to progressively incorporate the testing samples into the training process and thus balance the model between seen and unseen classes. Experimental results on five standard ZSL datasets show the superior performance of the proposed method and its transductive extension.
机译:零拍摄学习(ZSL)可以配制为跨域匹配问题:将投影到联合嵌入空间后,视觉样本将与所有候选类级语义描述匹配,并分配给最近的类。在此过程中,嵌入空间支撑了这种匹配的成功,并且对ZSL至关重要。在本文中,我们对ZSL的嵌入空间的构建进行了深入的研究,并且理想的嵌入空间应满足两个标准:类内紧凑性和阶级间可分离性。虽然前者鼓励一个类的视觉样本的嵌入,但是在嵌入这类类的语义描述中,后者需要嵌入来自不同类的嵌入,以彼此间隔得很好。对于实现这一目标,我们提出了一个简单但有效的双分支网络,同时将语义描述和视觉样本映射到一个联合空间,在该联合空间上,视觉嵌入物被迫向他们的类级语义嵌入物回归,并且需要嵌入式交叉类别可由培训分类器区分。此外,我们将我们的方法扩展到转换设置,以更好地处理ZSL中的模型偏置问题(即,从看不见的类别的样本倾向于被分类为所看到的额外监督。具体地,我们提出了一种伪标记策略,逐步将测试样本纳入训练过程,从而平衡所看到和看不见的课程之间的模型。五个标准ZSL数据集的实验结果显示了所提出的方法的卓越性能及其变频延伸。

著录项

  • 来源
  • 作者单位

    Northwestern Polytech Univ Sch Comp Sci Shaanxi Prov Key Lab Speech & Image Informat Proc Xian 710072 Peoples R China;

    Univ Wollongong Sch Comp & Informat Technol Wollongong NSW 2522 Australia;

    Univ Adelaide Sch Comp Sci Adelaide SA 5005 Australia|Australian Inst Machine Learning Adelaide SA 5005 Australia;

    Univ Adelaide Sch Comp Sci Adelaide SA 5005 Australia|Australian Inst Machine Learning Adelaide SA 5005 Australia;

    Northwestern Polytech Univ Sch Comp Sci Shaanxi Prov Key Lab Speech & Image Informat Proc Xian 710072 Peoples R China|Northwestern Polytech Univ Natl Engn Lab Integrated AeroSp Ground Ocean Big Sch Comp Sci Xian 710072 Peoples R China|Northwestern Polytech Univ Shenzhen Res & Dev Inst Shenzhen 518057 Peoples R China;

    Northwestern Polytech Univ Sch Comp Sci Shaanxi Prov Key Lab Speech & Image Informat Proc Xian 710072 Peoples R China|Northwestern Polytech Univ Natl Engn Lab Integrated AeroSp Ground Ocean Big Sch Comp Sci Xian 710072 Peoples R China;

    Univ Adelaide Sch Comp Sci Adelaide SA 5005 Australia|Australian Inst Machine Learning Adelaide SA 5005 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Visualization; Semantics; Training; Testing; Labeling; Computer science; Zero-shot learning; Deep embedding; Deep neural network;

    机译:可视化;语义;培训;测试;标签;计算机科学;零射击学习;深嵌入;深神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号