首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Sparse-to-Dense Depth Estimation in Videos via High-Dimensional Tensor Voting
【24h】

Sparse-to-Dense Depth Estimation in Videos via High-Dimensional Tensor Voting

机译:通过高维张量投票在视频中进行稀疏到密集深度估计

获取原文
获取原文并翻译 | 示例

摘要

Due to the popularity of 3D videos, 2D-to-3D video conversion has become a hot research topic for the past few years. The most critical issue in 3D video synthesis is the estimation of depth maps for the video frames. Numerous efforts have been devoted in fully automatic and semi-automatic depth estimation approaches, although the discontinuity of depth field and the ambiguity of motion boundary are still the main challenges in depth estimation. This paper proposes a semi-automatic structure-aware sparse-to-dense depth estimation method, which leverages the tensor voting at two different levels to propagate depth across frames. In the first level, a 4D tensor voting is performed to remove outliers caused by inaccurate motion estimation. Noticing that the 4D tensors of correctly matched points should lie on the smooth layer in the manifold, we utilize the variety saliency defined by the eigen-system of the tensor for outlier removal. In the second level, a high-dimensional tensor voting algorithm, incorporating spatial location, motion, and color into the tensor representation, is devised to propagate the depth from the sparse points to the entire image domain. By projecting the input feature into the tangent space, the relation between the location, motion, color, and the depth can be established by voting process. Extensive experiments on public data set validate the effectiveness of the proposed method in comparison with state-of-the-art depth estimation approaches.
机译:由于3D视频的流行,在过去的几年中2D到3D视频转换已成为研究的热点。 3D视频合成中最关键的问题是估计视频帧的深度图。尽管深度场的不连续性和运动边界的歧义仍然是深度估计的主要挑战,但是在全自动和半自动深度估计方法上已经进行了许多努力。本文提出了一种半自动结构感知的稀疏到密集深度估计方法,该方法利用两个不同级别的张量投票在帧之间传播深度。在第一级中,执行4D张量投票以消除由不正确的运动估计引起的异常值。注意到正确匹配点的4D张量应位于流形中的平滑层上,我们利用由张量本征系统定义的多样性显着性进行离群值去除。在第二层中,设计了一种高维张量投票算法,该算法将空间位置,运动和颜色合并到张量表示中,以将深度从稀疏点传播到整个图像域。通过将输入要素投影到切线空间中,可以通过投票过程来确定位置,运动,颜色和深度之间的关系。与最新的深度估计方法相比,在公共数据集上进行的大量实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号