首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Robust estimation of adaptive tensors of curvature by tensor voting
【24h】

Robust estimation of adaptive tensors of curvature by tensor voting

机译:张量投票的自适应曲率张量的鲁棒估计

获取原文
获取原文并翻译 | 示例

摘要

Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.
机译:尽管从给定的网格或规则采样的点集进行曲率估计是一个经过充分研究的问题,但是当输入包含因未对准误差和离群噪声而损坏的非结构化点云时,仍然存在挑战。这样的输入在计算机视觉中是无处不在的。在本文中,我们提出了一种三遍张量投票算法来鲁棒估计曲率张量,从中可以计算出准确的主曲率和方向。我们的定量估计是对以前的两遍算法的改进,后者仅执行定性曲率估计(高斯曲率的符号)。为了克服未对准错误,我们改进的方法以亚体素精度自动校正输入点位置,这也拒绝了不可校正的异常值。为了局部适应不同的比例,我们定义曲率张量的RadiusHit以量化估计的准确性和适用性。我们的曲率估计算法已通过详细的定量实验证明,在存在大量失准噪声的情况下,在各种标准误差度量(曲率幅度的百分比误差,曲率方向的绝对角度差)中表现更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号