首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Fast Landmark Localization With 3D Component Reconstruction and CNN for Cross-Pose Recognition
【24h】

Fast Landmark Localization With 3D Component Reconstruction and CNN for Cross-Pose Recognition

机译:具有3D分量重构和CNN的跨站姿识别快速地标定位

获取原文
获取原文并翻译 | 示例

摘要

Two approaches are proposed for cross-pose face recognition, one is built on the handcrafted features extracted from the 3D reconstruction of facial components and the other is built on the learned features from a deep convolutional neural network (CNN). As both approaches rely on facial landmarks for alignment across large poses, we propose the Fast Hierarchical Model (FHM) for locating cross-pose facial landmarks in real time. Unlike most 3D approaches that consider holistic faces, the first proposed approach considers 3D facial components. It segments each 2D face in the gallery into components, reconstructs the 3D surface for each component, and recognizes a query face by component features. The core part of the CNN-based approach is a modified VGG network. We study the performance with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. The two recognition approaches and the FHM are evaluated in extensive experiments and compared with state-of-the-art methods to demonstrate their efficacy.
机译:提出了两种用于跨姿势人脸识别的方法,一种方法是基于从面部组件的3D重构中提取的手工特征,另一种方法是基于从深度卷积神经网络(CNN)获得的特征。由于这两种方法都依赖于人脸地标来跨较大的姿势进行对齐,因此我们提出了快速分层模型(FHM)来实时定位跨姿势的人脸地标。与大多数考虑整体面孔的3D方法不同,第一个提出的方法考虑3D面部成分。它将图库中的每个2D面孔分割成多个组件,为每个组件重建3D曲面,并按组件特征识别查询面孔。基于CNN的方法的核心部分是改进的VGG网络。我们在训练集上的不同设置下研究了性能,包括3D重建的综合数据,来自野生数据库的真实数据以及两种数据的组合。在广泛的实验中对这两种识别方法和FHM进行了评估,并与最新技术进行了比较,以证明它们的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号