【24h】

Multiwavelet analysis and signal processing

机译:多小波分析和信号处理

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present some results and applications concerningnthe recent theory of multiscaling functions and multiwavelets. Innparticular, we present the theory in compact notation with the use ofnsome types of recursive block matrices. This allows a flexiblenschematization of the construction of semi-orthogonal multiwavelets. Asnin the scalar case, an efficient algorithm for the computation of thencoefficients of a multiwavelet transform can be obtained, in which rninput sequences are involved. This is a crucial point: the choice of angood prefilter which can provide a good approximation of the trueninitial coefficient sequences, when applied to the input data, isncritical in the context of multiwavelet analysis. We explore thisnproblem with concrete examples, showing the strong dependence of thenprefilter on the chosen multiwavelet basis. Finally, an application ofnthe multiwavelet-based algorithm to signal compression is shown. Thengoal is both to compare the results obtained with different multiwaveletnbases, and to test the effectiveness of multiwavelets in this kind ofnproblem with respect to scalar wavelets
机译:在本文中,我们介绍了有关最新的多尺度函数和多小波理论的一些结果和应用。尤其是,我们使用少量类型的递归块矩阵以紧凑表示法提出了该理论。这允许半正交多小波的构造的灵活化学化。在标量情况下,可以获得一种有效的算法,用于计算多小波变换的系数,其中涉及到rn个输入序列。这是至关重要的一点:在多小波分析的背景下,选择合适的预滤波器可以很好地逼近真实初始系数序列(当应用于输入数据时),这一点至关重要。我们用具体的例子来探讨这个问题,表明在选择的多小波基础上,然后预滤波器的强烈依赖性。最后,展示了一种基于多小波的算法在信号压缩中的应用。然后既要比较在不同的多小波基数下获得的结果,又要检验这种多问题在标量小波方面的有效性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号