首页> 外文期刊>IEEE transactions on circuits and systems. II, Express briefs >A Recursive Frequency Estimator Using Linear Prediction and a Kalman-Filter-Based Iterative Algorithm
【24h】

A Recursive Frequency Estimator Using Linear Prediction and a Kalman-Filter-Based Iterative Algorithm

机译:基于线性预测和基于卡尔曼滤波的迭代算法的递归频率估计器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new Kalman-filter-based recursive frequency estimator for discrete-time multicomponent sinusoidal signals whose frequencies may be time-varying. The frequency estimator is based on the linear prediction approach and it employs the Kalman filter to track the linear prediction coefficients (LPCs) recursively. Frequencies of the sinusoids can then be computed using the estimated LPCs. Due to the coloredness of the linear prediction error, an iterative algorithm is employed to estimate the covariance matrix of the prediction error and the LPCs alternately in the Kalman filter in order to improve the tracking performance. Simulation results show that the proposed Kalman-filter-based iterative frequency estimator can achieve better tracking results than the conventional recursive least-squares-based estimators.
机译:针对频率可能随时间变化的离散时间多分量正弦信号,本文提出了一种新的基于卡尔曼滤波器的递归频率估计器。频率估算器基于线性预测方法,它采用卡尔曼滤波器来递归跟踪线性预测系数(LPC)。然后可以使用估计的LPC计算正弦波的频率。由于线性预测误差的有色性,在卡尔曼滤波器中采用迭代算法交替估计预测误差和LPC的协方差矩阵,以提高跟踪性能。仿真结果表明,与传统的基于最小二乘的递归估计器相比,基于卡尔曼滤波器的迭代频率估计器可以获得更好的跟踪效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号