首页> 外文学位 >Improving the Consistency of Nonlinear Estimators: Analysis, Algorithms, and Applications.
【24h】

Improving the Consistency of Nonlinear Estimators: Analysis, Algorithms, and Applications.

机译:改善非线性估计器的一致性:分析,算法和应用。

获取原文
获取原文并翻译 | 示例

摘要

Autonomous robots are emerging as candidates for performing increasingly complex tasks, such as surveillance and environment monitoring, search and rescue, and planetary exploration. Nonlinear estimation (i.e., estimating the state of a nonlinear system from noisy measurements) arises in all these applications. For instance, robot localization - which is considered as one of the fundamental problems in robotics - seeks to determine the robot's pose (position and orientation) using measurements from onboard sensors (e.g., an odometer and a camera). Another closely-related and important example is target tracking, where the objective is to estimate the target's state using remote sensor observations. Even though many different algorithms, such as the extended Kalman filter (EKF) and the batch maximum a posteriori (MAP) estimator, have been developed for solving these problems, substantial empirical evidence shows that most existing nonlinear estimators tend to become inconsistent (i.e., the state estimates are biased and the error covariance estimates are smaller than the true ones). Moreover, a significant limitation is that the causes of inconsistency have not been sufficiently studied in the literature; if an estimator is inconsistent, the accuracy of its estimates is unknown, which makes the estimator unreliable. The objective of this dissertation is to investigate the main causes of inconsistency of nonlinear estimation and develop new algorithms for improving consistency.;As one of the main research thrusts, we study in depth the inconsistency problem in robot localization, including simultaneous localization and mapping (SLAM) and multi-robot cooperative localization (CL). In particular, we show for the first time ever that one fundamental cause of inconsistency is the mismatch between the observability properties of the underlying nonlinear system and the linearized system used by the estimator. By performing observability analysis, we prove that the linearized error-state system used by standard filtering/smoothing algorithms---the EKF, the unscented Kalman filter (UKF), and the sliding-window filter (SWF)---has an observable subspace of higher dimension than that of the underlying nonlinear system. This implies that these estimators gain spurious information (more specifically, about the global orientation) from the measurements, which unjustifiably reduces the uncertainty of the state estimates and causes inconsistency. Based on this key insight, for unobservable nonlinear systems, we propose a novel methodology for designing consistent linearized estimators. Specifically, we develop a family of Observability-Constrained (OC)-estimators---including the OC-EKF, the OC-UKF, and the OC-SWF---whose Jacobians are computed in a way to ensure that the estimator's linearized system model has an observable subspace of the same dimension as that of the underlying nonlinear system.;Furthermore, we investigate the inconsistency of estimators for observable nonlinear systems, such as target tracking using distance or bearing measurements, whose cost functions are non-convex and often have multiple local minima. In such cases, we discover that the inconsistency of a standard linearized estimator, such as the EKF, is primarily due to the fact that the estimator is able to find and track only one local minimum. To address this issue, we convert the estimator's nonlinear cost function into polynomial form and employ algebraic geometry techniques to analytically compute all its local minima. These local minima are used as initial estimates by a bank of MAP estimators to efficiently track the most probable hypotheses for the entire state trajectory. Moreover, we adapt this idea to particle filters (PFs) and develop an Analytically-Guided-Sampling (AGS)-PF. Specifically, the AGS-PF employs an analytically-determined Gaussian mixture as proposal distribution which not only takes into account the most recent measurement but also matches all the modes of the posterior (optimal proposal) distribution. As a result, the AGS-PF samples the most probable regions of the state space and hence significantly reduces the number of particles required.;As precise long-term localization and tracking are essential for a variety of robotic applications, by introducing a solid theoretical framework for improving the consistency of nonlinear estimators, this work offers significant benefits for robots employed in these tasks. Moreover, the proposed solutions constitute novel paradigms for engineers to follow when designing consistent estimators for other nonlinear systems, and hence have the potential to benefit applications beyond robotics.
机译:自主机器人正在成为执行日益复杂的任务(例如监视和环境监视,搜索和救援以及行星探测)的候选人。在所有这些应用中都出现了非线性估计(即,从噪声测量中估计非线性系统的状态)。例如,机器人定位-在机器人技术中被认为是基本问题之一-试图使用车载传感器(例如,里程表和照相机)的测量结果来确定机器人的姿势(位置和方向)。另一个密切相关且重要的示例是目标跟踪,其目标是使用远程传感器观察来估计目标的状态。尽管已经开发出许多不同的算法来解决这些问题,例如扩展卡尔曼滤波器(EKF)和批处理最大值后验(MAP)估计器,但大量的经验证据表明,大多数现有的非线性估计器趋于变得不一致(即,状态估算值有偏差,误差协方差估算值小于真实估算值)。此外,一个显着的局限性是不一致的原因尚未在文献中得到充分研究。如果估算器不一致,则其估算的准确性是未知的,这会使估算器不可靠。本文的目的是研究非线性估计不一致的主要原因,并开发新的算法来提高一致性。;作为主要研究重点之一,我们深入研究了机器人定位中的不一致问题,包括同时定位和映射( SLAM)和多机器人协作本地化(CL)。特别是,我们首次证明不一致的一个根本原因是底层非线性系统的可观测性与估计器使用的线性化系统之间的不匹配。通过观察性分析,我们证明标准滤波/平滑算法(EKF,无味卡尔曼滤波器(UKF)和滑动窗口滤波器(SWF))使用的线性化误差状态系统是可观察的。比基础非线性系统具有更高维度的子空间。这意味着这些估计器从测量中获得了虚假信息(更具体地讲,关于全局方向),这不合理地减少了状态估计的不确定性并导致了不一致。基于这一关键见识,对于不可观测的非线性系统,我们提出了一种用于设计一致的线性估计量的新颖方法。具体来说,我们开发了一系列可观度受限(OC)估计量-包括OC-EKF,OC-UKF和OC-SWF-,其Jacobian的计算方式可确保估计量的线性化系统模型具有与基础非线性系统相同尺寸的可观察子空间。此外,我们研究了可观察非线性系统的估计量的不一致性,例如使用距离或方位测量进行目标跟踪,其成本函数为非凸且通常有多个局部最小值在这种情况下,我们发现标准线性估算器(例如EKF)的不一致主要是由于估算器只能找到和跟踪一个局部最小值的事实。为了解决这个问题,我们将估算器的非线性成本函数转换为多项式形式,并采用代数几何技术来分析计算其所有局部最小值。一组MAP估计器将这些局部最小值用作初始估计,以有效地跟踪整个状态轨迹的最可能假设。此外,我们将这种想法适用于粒子过滤器(PF),并开发了一种有指导性的采样(AGS)-PF。具体来说,AGS-PF采用分析确定的高斯混合作为提案分布,该提案分布不仅考虑了最新的度量值,还匹配了后验(最佳提案)分布的所有模式。结果,AGS-PF对状态空间中最可能的区域进行采样,从而显着减少了所需的粒子数量。由于引入了扎实的理论,精确的长期定位和跟踪对于各种机器人应用都是必不可少的框架,以提高非线性估计器的一致性,这项工作为从事这些任务的机器人提供了显着的好处。此外,提出的解决方案构成了工程师在设计其他非线性系统的一致估计量时可以遵循的新颖范例,因此有可能使机器人技术以外的应用受益。

著录项

  • 作者

    Huang, Guoquan.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Electronics and Electrical.;Engineering Robotics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号