首页> 外文期刊>IEEE transactions on circuits and systems. II, Express briefs >Recurrently Decomposable 2-D Convolvers for FPGA-Based Digital Image Processing
【24h】

Recurrently Decomposable 2-D Convolvers for FPGA-Based Digital Image Processing

机译:可循环分解的二维卷积器,用于基于FPGA的数字图像处理

获取原文
获取原文并翻译 | 示例

摘要

Two-dimensional (2-D) convolution is a widely used operation in image processing and computer vision, characterized by intensive computation and frequent memory accesses. Previous efforts to improve the performance of field-programmable gate array (FPGA) convolvers focused on the design of buffering schemes and on minimizing the use of multipliers. A recently proposed recurrently decomposable (RD) filter design method can reduce the computational complexity of 2-D convolutions by splitting the convolution between an image and a large mask into a sequence of convolutions using several smaller masks. This brief explores how to efficiently implement RD-based 2-D convolvers using FPGA. Three FPGA architectures are proposed based on RD filters, each with a different buffering scheme. The conclusion is that RD-based architectures achieve higher area efficiency than other previously reported state-of-the-art methods, especially for larger convolution masks. An area efficiency metric is also suggested, which allows the most appropriate architecture to be selected.
机译:二维(2-D)卷积是图像处理和计算机视觉中广泛使用的操作,其特征在于密集的计算和频繁的内存访问。先前为提高现场可编程门阵列(FPGA)卷积器性能而做出的努力主要集中在缓冲方案的设计和最小化乘法器的使用上。最近提出的循环可分解(RD)滤波器设计方法可以通过使用几个较小的蒙版将图像和大蒙版之间的卷积拆分为一系列卷积来降低2-D卷积的计算复杂度。本简介探讨了如何使用FPGA有效实现基于RD的2-D卷积器。提出了三种基于RD滤波器的FPGA架构,每种架构都有不同的缓冲方案。结论是,基于RD的体系结构比其他先前报告的最新方法具有更高的面积效率,尤其是对于较大的卷积掩码。还建议使用面积效率指标,该指标允许选择最合适的体系结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号