首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on >Learning Separable Dictionaries for Sparse Tensor Representation: An Online Approach
【24h】

Learning Separable Dictionaries for Sparse Tensor Representation: An Online Approach

机译:学习稀疏张量表示的独立词典:一种在线方法

获取原文
获取原文并翻译 | 示例

摘要

Dictionary learning (DL) for sparse tensor representation aims to train a set of dictionaries for each dimension using tensor samples based on the Tucker decomposition. However, their applications are limited by the fact that all the training samples must be input simultaneously, and that there is no direct way to extend the existing online DL methods for the vector-based model to the Tucker-decomposition-based model. To overcome this limitation, in this brief, we develop a Tucker-decomposition-based strategy to achieve a warm start for updating dictionaries, based on which, an online tensor DL (TDL) algorithm is proposed. The proposed algorithm processes a single new training sample at a time, such that it can be used not only for offline learning from static samples, but also for online learning from dynamic samples, under the framework of the Tucker model. When new training samples are input, only the newly added samples need to be used for retraining the dictionaries. We verify the convergence and low-complexity of the proposed algorithm via theoretical analysis as well as online learning simulations. We also perform offline learning simulations, the results of which demonstrate that our algorithm has an obvious advantage in training accuracy over existing TDL algorithms. The proposed algorithm has the potential to be used in fields such as multidimensional signal processing, compressive sensing, and machine learning.
机译:稀疏张量表示的字典学习(DL)旨在使用基于Tucker分解的张量样本为每个维度训练一组字典。但是,它们的应用受到以下限制:必须同时输入所有训练样本,并且没有直接的方法可以将基于向量的模型的现有在线DL方法扩展为基于Tucker分解的模型。为了克服此限制,在本文中,我们开发了一种基于Tucker分解的策略来为更新词典提供一个良好的开端,在此基础上,提出了一种在线张量DL(TDL)算法。所提出的算法一次处理一个新的训练样本,因此它不仅可以用于从静态样本进行离线学习,而且可以在塔克模型的框架下用于从动态样本进行在线学习。当输入新的训练样本时,仅需要使用新添加的样本来重新训练字典。我们通过理论分析和在线学习仿真验证了该算法的收敛性和低复杂度。我们还进行了离线学习模拟,其结果表明,与现有的TDL算法相比,我们的算法在训练准确性上具有明显的优势。提出的算法具有在多维信号处理,压缩感测和机器学习等领域中使用的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号