首页> 外文期刊>BIT numerical mathematics >Fast computation of orthonormal basis for RBF spaces through Krylov space methods
【24h】

Fast computation of orthonormal basis for RBF spaces through Krylov space methods

机译:通过Krylov空间方法快速计算RBF空间的正交基础

获取原文
获取原文并翻译 | 示例

摘要

In recent years, in the setting of radial basis function, the study of approximation algorithms has particularly focused on the construction of (stable) bases for the associated Hilbert spaces. One of the ways of describing such spaces and their properties is the study of a particular integral operator and its spectrum. We proposed in a recent work the so-called WSVD basis, which is strictly connected to the eigen-decomposition of this operator and allows to overcome some problems related to the stability of the computation of the approximant for a wide class of radial kernels. Although effective, this basis is computationally expensive to compute. In this paper we discuss a method to improve and compute in a fast way the basis using methods related to Krylov subspaces. After reviewing the connections between the two bases, we concentrate on the properties of the new one, describing its behavior by numerical tests.
机译:近年来,在径向基函数的设置中,逼近算法的研究特别关注于关联希尔伯特空间的(稳定)基的构造。描述此类空间及其性质的方法之一是研究特定的积分算子及其谱。我们在最近的工作中提出了所谓的WSVD基础,该基础与该算子的特征分解严格相关,并且可以克服一些问题,这些问题涉及广泛的一类径向核的近似值的计算稳定性。尽管有效,但此基础的计算量很大。在本文中,我们讨论了一种使用与Krylov子空间相关的方法快速改进和计算基础的方法。在回顾了两个基地之间的联系之后,我们集中讨论了新基地的性质,并通过数值测试描述了它的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号