首页> 外文期刊>Biomedical signal processing and control >Pre-processing techniques for improved detection of vocalization sounds in a neonatal intensive care unit
【24h】

Pre-processing techniques for improved detection of vocalization sounds in a neonatal intensive care unit

机译:用于改善新生儿重症监护室发声声音检测的预处理技术

获取原文
获取原文并翻译 | 示例

摘要

The sounds occurring in the noisy acoustical environment of a Neonatal Intensive Care Unit (NICU) are thought to affect the growth and neurodevelopment of preterm infants. Automatic sound detection in a NICU is a novel and challenging problem, and it is an essential step in the investigation of how preterm infants react to auditory stimuli of the NICU environment. In this paper, we present our work on an automatic system for detection of vocalization sounds, which are extensively present in NICUs. The proposed system reduces the presence of irrelevant sounds prior to detection. Several pre-processing techniques are compared, which are based on either spectral subtraction or non-negative matrix factorization, or a combination of both. The vocalization sounds are detected from the enhanced audio signal using either generative or discriminative classification models. An audio database acquired in a real-world NICU environment is used to assess the performance of the detection system in terms of frame-level missing and false alarm rates. The inclusion of the enhancement pre-processing step leads to up to 17.54% relative improvement over the baseline. (C) 2017 Elsevier Ltd. All rights reserved.
机译:新生儿重症监护病房(NICU)嘈杂的声学环境中发生的声音被认为会影响早产儿的生长和神经发育。 NICU中的自动声音检测是一个新颖且具有挑战性的问题,它是调查早产婴儿对NICU环境的听觉刺激反应的必不可少的步骤。在本文中,我们介绍了用于检测发声声音的自动系统的工作,该系统广泛存在于NICU中。所提出的系统减少了在检测之前不相关声音的存在。比较了几种预处理技术,这些技术基于谱减法或非负矩阵分解或两者结合。使用生成或判别分类模型从增强的音频信号中检测发声声音。在现实的重症监护病房(NICU)环境中获取的音频数据库用于根据帧级丢失率和误报率评估检测系统的性能。包含增强预处理步骤可导致相对于基线的相对改进高达17.54%。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号