首页> 外文期刊>Biomedical signal processing and control >Automated detection of tumor regions from oral histological whole slide images using fully convolutional neural networks
【24h】

Automated detection of tumor regions from oral histological whole slide images using fully convolutional neural networks

机译:使用完全卷积神经网络自动检测来自口服组织学全幻灯片图像的肿瘤区

获取原文
获取原文并翻译 | 示例

摘要

The diagnosis of different types of cancer, including oral cavity-derived cancer, is made by a pathologist through complex and time-consuming microscopic analysis of tissue samples. This paper presents a method based on a fully convolutional neural network to localize and perform refined segmentation of oral cavity-derived tumor regions in H&E-stained histological whole slide images. The proposed method uses color features in the HSV color model to identify tissue regions in a pre-processing step to remove background and nonrelevant areas. The identified tissue regions are then transformed into the CIE L*a*b* color model and split into image-patches. The method was applied in a WSI dataset of oral squamous cell carcinoma tissue samples. In addition, for further validation and comparison with other proposals, we also applied the proposed method in a WSI dataset of sentinel lymph nodes with breast cancer metastases. Experimental evaluations were performed using a total of 85,621 image-patches of size 640 x 640 pixels and the proposed method achieved good results in different cancer-derived datasets with images of different tumors. The results revealed that the proposal is robust and capable to localize and perform refined segmentation, achieving accuracy results up to 97.6%, specificity up to 98.4%, and sensitivity up to 92.9%. The influence of different color spaces and different image-patch sizes in the proposed method also were explored.
机译:通过对组织样品的复杂和耗时的微观分析,通过病理学家进行不同类型的癌症,包括口腔型癌症的诊断。本文介绍了一种基于全卷积神经网络的方法,以定位和执行H&E染色的组织学全幻灯片图像中口腔衍生肿瘤区域的精制分割。所提出的方法使用HSV颜色模型中的颜色特征来识别预处理步骤中的组织区域以去除背景和非/非重物区域。然后将鉴定的组织区域转化为CIE L * A * B *颜色模型并分成图像贴片。该方法应用于口腔鳞状细胞癌组织样本的WSI数据集。此外,为了进一步验证和与其他提案进行比较,我们还将所提出的方法应用于具有乳腺癌转移的Sentinel淋巴结的WSI DataSet中。使用总共85,621个图像贴片进行实验评估,尺寸为640×640像素,并且所提出的方法在不同的癌症衍生的数据集中实现了良好的结果,其中具有不同肿瘤的图像。结果表明,该提议具有稳健性,能够定位和进行精致分割,实现高达97.6%,特异性高达98.4%,敏感度高达92.9%。还探讨了不同颜色空间和不同图像贴片大小的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号