首页> 外文期刊>International journal of computer science and network security >Automated Classification of Breast Cancer Histology Images Using Deep Learning Based Convolutional Neural Networks
【24h】

Automated Classification of Breast Cancer Histology Images Using Deep Learning Based Convolutional Neural Networks

机译:使用基于深度学习的卷积神经网络对乳腺癌组织学图像进行自动分类

获取原文

摘要

Automated classification of cancers using histopathological images is a challenging task of accurate detection of tumor sub-types. In this paper, we applied fine-tuned pre-trained deep neural networks classified on BreakHis datasets on eight distinct classes for benign has four sub-classes (adenosis, fibroadenoma, phyllodes tumor, and tubular adenoma) malignant has four sub-classes (ductal carcinoma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma) all together on difference model on Inception (V1,V2) and ResNet V1 50. The confusion matrix showing high accuracy value 95% with less error rate 0.011 .
机译:使用组织病理学图像对癌症进行自动分类是准确检测肿瘤亚型的一项艰巨任务。在本文中,我们将在BreakHis数据集上分类的经过微调的预训练深层神经网络应用于八个不同类别的良性具有四个亚类(腺瘤,纤维腺瘤,叶状体肿瘤和肾小管腺瘤),恶性具有四个亚类(导管性)癌,小叶癌,粘液状癌和乳头状癌)一起在Inception(V1,V2)和ResNet V1 50上的差异模型上。混淆矩阵显示出95%的高精度值,错误率低0.011。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号