首页> 外文期刊>Biomedical signal processing and control >Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer's disease diagnosis
【24h】

Deep feature extraction method based on ensemble of convolutional auto encoders: Application to Alzheimer's disease diagnosis

机译:基于卷积自动编码器集合的深度特征提取方法:应用于阿尔茨海默病诊断

获取原文
获取原文并翻译 | 示例

摘要

Alzheimer's disease is one of the famous causes of death among elderly. Diagnosis of this disease in the early stage is so difficult by conventional methods. Machine learning methods are one of the best choice for improving the accuracy and performance of diagnosis procedure. The heterogeneous dimensions and structure among the data of this disease have complicated the diagnosis process. Therefore proper features are needed to solve this complexity. In this research, proposed method is introduced in two main steps. In the first step, ensemble of pre-trained auto encoder based feature extraction modules are used to generate image feature from 3D input image and in the second step convolutional neural network is used to diagnosis Alzheimer's disease. Three different classification cases, namely; Alzheimer's Disease (AD) versus Normal Condition (NC), AD versus Mild Cognitive Impairment (MCI) and MCI versus NC are studied. Obtained results show that accuracy rate for AD/NC, AD/MCI and MCI/NC are 95%, 90% and 92.5%, respectively. Also, for all cases sensitivity and specially sensitivity rates for proposed method confirm that it could be reliable for diagnosis AD in early stage and has less error to detect normal condition.
机译:阿尔茨海默病是老年人着名的死亡原因之一。通过常规方法诊断在早期阶段的诊断是如此困难。机器学习方法是提高诊断程序的准确性和性能的最佳选择之一。这种疾病数据之间的异质尺寸和结构使诊断过程复杂化。因此,需要适当的功能来解决这种复杂性。在该研究中,提出的方法是以两个主要步骤引入的。在第一步中,使用预先训练的自动编码器的特征提取模块的集合用于从3D输入图像生成图像特征,并且在第二步卷积神经网络中用于诊断阿尔茨海默病。三种不同的分类案例,即; Alzheimer的疾病(AD)与正常情况(NC),AD与轻度认知障碍(MCI)和MCI与NC进行了研究。得到的结果表明,AD / NC,AD / MCI和MCI / NC的准确率分别为95%,90%和92.5%。此外,对于所有情况,所提出的方法的敏感性和特殊灵敏度率确认它可以在早期诊断广告可靠,检测正常情况较少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号