首页> 外文期刊>Biomedical signal processing and control >Non-rigid registration of biomedical image for radiotherapy based on adaptive feature density flow
【24h】

Non-rigid registration of biomedical image for radiotherapy based on adaptive feature density flow

机译:基于自适应特征密度流动的放射疗法的非刚性注册

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a non-rigid biomedical image registration method based on Adaptive feature density flow (AFDF). Considering the muhiplicative characteristics of metadata signal for instance Magnetic Resonance Imaging (MRI) with high-resolution and high-sensitivity, the Non-Local Means Filtering Adapted to Rician Noise (NLMr) is employed to remove Rician noise rather than Gaussian noise with higher Peak Signal to Noise Ratio (PSNR). The deformation information and local shape information are homogeneous, so a flexible dimension of Fast Local Self-Similarity (FLSS) feature descriptor can be constructed to obtain adaptive FLSS (AFLSS) feature descriptor with adaptive Angle and Radial intervals. On the basis of AFLSS, the Adaptive feature density flow (AFDF) is proposed by calculating the dense feature flow field via Belief Propagation algorithm and thereby further optimized by the Pyramid iterative method. Finally, the image registration is completed by using the bicubic interpolation algorithm according to the dense feature flow field. Aiming at radiotherapy positioning control through precise robust registration of biomedical images, experiments of human brain MR images are carried out. The comparative results with PSNR, Root Mean Square Error (RMSE) and normalize mutual information (NMI) show that AFDF performs better than the optical flow method and Scale Invariant Feature Transform (SIFT) flow method, especially for the biomedical scenario with unconscious creep deformation.
机译:本文介绍了基于自适应特征密度流(AFDF)的非刚性生物医学图像配准法。考虑到具有高分辨率和高灵敏度的磁共振成像(MRI)的元数据信号的muhpipatata信号的特性,适用于RICian噪声(NLMR)的非局部意味着滤波,用于去除瑞典噪声,而不是高峰噪声信噪比(PSNR)。变形信息和局部形状信息是均匀的,因此可以构造快速局部自相似性(FLSS)特征描述符的灵活维度以获得具有自适应角度和径向间隔的自适应FLS(AFLS)特征描述符。在AFLS的基础上,通过信仰传播算法计算致密特征流场,从而通过金字塔迭代方法进一步优化来提出自适应特征密度流(AFDF)。最后,通过使用根据致密特征流场的双向插值算法完成图像配准。旨在通过精确的生物医学图像进行精确的鲁棒登记进行放射疗法定位,进行人脑MR图像的实验。与PSNR,均方根误差(RMSE)和标准化相互信息(NMI)的比较结果表明,AFDF比光学流量和尺度不变特征变换(SIFT)流量变换更好,特别是对于无意识蠕变变形的生物医学方案。

著录项

  • 来源
    《Biomedical signal processing and control》 |2021年第1期|102691.1-102691.16|共16页
  • 作者单位

    Zhejiang Univ State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China|Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Peoples R China|Zhejiang Univ Sch Mech Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mech Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China|Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Peoples R China|Zhejiang Univ Sch Mech Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Med Affiliated Hosp 1 Hangzhou 310000 Peoples R China;

    Zhejiang Univ State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China|Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Peoples R China|Zhejiang Univ Sch Mech Engn Hangzhou 310027 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-rigid registration; Biomedical image; Radiotherapy positioning; Adaptive feature density flow (AFDF); Dense feature flow field;

    机译:非刚性注册;生物医学图像;放射疗法定位;自适应特征密度流(AFDF);致密特征流场;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号