首页> 外文期刊>Biomedical signal processing and control >Dermo-DOCTOR: A framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders
【24h】

Dermo-DOCTOR: A framework for concurrent skin lesion detection and recognition using a deep convolutional neural network with end-to-end dual encoders

机译:Dermo-Doctor:一种用于同时皮肤病变检测和识别的框架,使用深卷积神经网络具有端到端双编码器

获取原文
获取原文并翻译 | 示例

摘要

Background and objective: Automated skin lesion analysis for simultaneous detection and recognition is still challenging for inter-class homogeneity and intra-class heterogeneity, leading to low generic capability of a single convolutional neural network (CNN) with limited datasets. Methods: This article proposes an end-to-end deep CNN-based framework for simultaneous detection and recognition of the skin lesions, named Dermo-DOCTOR, consisting of two encoders. The feature maps from two encoders are fused channel-wise, called Fused Feature Map (FFM). The FFM is utilized for decoding in the detection sub-network, concatenating each stage of two encoders & rsquo; outputs with corresponding decoder layers to retrieve the lost spatial information due to pooling in the encoders. For the recognition sub-network, the outputs of three fully connected layers, utilizing feature maps of two encoders and FFM, are aggregated to obtain a final lesion class. We train and evaluate the proposed Dermo-Doctor utilizing two publicly available benchmark datasets, such as ISIC-2016 and ISIC-2017. Results: The achieved segmentation results exhibit mean intersection over unions of 85.0% and 80.0% respectively for ISIC-2016 and ISIC-2017 test datasets. The proposed Dermo-DOCTOR also demonstrates praiseworthy success in lesion recognition, providing the areas under the receiver operating characteristic curves of 0.98 and 0.91 respectively for those two datasets. The experimental results show that the proposed Dermo-DOCTOR outperforms the alternative methods mentioned in the literature, designed for skin lesion detection and recognition. Conclusion: As the Dermo-DOCTOR provides better results on two different test datasets, even with limited training data, it can be an auspicious computer-aided assistive tool for dermatologists.
机译:背景和目的:用于同时检测和识别的自动化皮肤病变分析仍然挑战阶级均匀性和类内异质性,导致单个卷积神经网络(CNN)具有有限数据集的低通用能力。方法:本文提出了一种基于端到端的深度CNN的框架,用于同时检测和识别名为Dermo-Doctor的皮肤病痛,包括两个编码器。来自两个编码器的特征映射是融合的通道,称为融合特征映射(FFM)。 FFM用于解码检测子网,连接两个编码器的每个阶段和rsquo;输出具有相应解码器层,以检索由于在编码器中池中的池引起的丢失的空间信息。对于识别子网,使用两个编码器和FFM的特征映射的三个完全连接的图层的输出被聚合以获得最终病变类。我们利用两种公开的基准数据集培训并评估提出的Dermo-Doctor,例如ISIC-2016和ISIC-2017。结果:实现的分割结果分别表现出平均交叉口,分别为ISIC-2016和ISIC-2017测试数据集分别为85.0%和80.0%。拟议的Dermo-Doctor还表明了病变认可的可值得称道的成功,为这两个数据集分别提供了0.98和0.91的接收器下的接收器的区域。实验结果表明,拟议的Dermo-Doctor优于文献中提到的替代方法,专为皮肤病变检测和识别而设计。结论:由于Dermo-Doctor在两种不同的测试数据集中提供更好的结果,即使具有有限的培训数据,它也可以是皮肤科医生的吉祥计算机辅助工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号