首页> 外文期刊>Biomedical signal processing and control >Class-driven content-based medical image retrieval using hash codes of deep features
【24h】

Class-driven content-based medical image retrieval using hash codes of deep features

机译:基于类的基于内容的医学图像检索使用深度的散列代码

获取原文
获取原文并翻译 | 示例

摘要

Medical imaging provides the convenience of physicians to analyze the disease by providing visual data of the body parts required for clinical research and treatment. Today, increasing medical images following technological developments are stored for a better understanding of diseases and future diagnoses. Effective medical image indexing and retrieval systems are required to use these images from storage repositories in real-time. In this quest, this paper provides an effective indexing and retrieval framework using deep features for MR and CT image indexing and searching. The proposed system aims to produce the most effective and least parameterized hash codes by using image features. For this reason, deep features are obtained from medical images using the convolutional neural network (CNN) architecture, which is the most effective automatic feature extraction method. The length of the acquired raw deep feature vectors for an image is relatively inefficient for retrieval speed. Feature reduction methods are used for the most effective reduction of the length of the deep feature vector. The most effective feature reduction algorithm is determined in this study. The main reason for producing a reduced class-driven hash code with feature selection algorithms is the drawbacks of medical image datasets. These drawbacks prevent the CNN output from being used directly as hash-code. The performance of the proposed method is tested on NEMA MRI and NEMA CT datasets. The proposed method is able to outperform the other state-of-the-art algorithms in terms of average precision performance.
机译:医学成像提供了医生通过提供临床研究和治疗所需的身体部位的视觉数据来分析疾病的便利性。今天,储存了技术发展之后的医学图像,以更好地了解疾病和未来诊断。有效的医学图像索引和检索系统需要实时从存储存储库中使用这些图像。在此任务中,本文提供了使用深度特征的有效的索引和检索框架,用于MR和CT图像索引和搜索。所提出的系统旨在通过使用图像特征来产生最有效和最少的参数化散列码。因此,使用卷积神经网络(CNN)架构从医学图像获得深度特征,这是最有效的自动特征提取方法。用于图像的获取的原始深度传感器的长度对于检索速度相对效率低。特征减少方法用于最有效地减少深度特征向量的长度。本研究确定了最有效的特征还原算法。使用特征选择算法产生减少的类驱动哈希码的主要原因是医学图像数据集的缺点。这些缺点可防止CNN输出直接用于散列码。在NEMA MRI和NEMA CT数据集上测试了所提出的方法的性能。所提出的方法能够在平均精度性能方面优于其他最先进的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号