首页> 外文期刊>Biomedical signal processing and control >Design of a portable retinal imaging module with automatic abnormality detection
【24h】

Design of a portable retinal imaging module with automatic abnormality detection

机译:具有自动异常检测的便携式视网膜成像模块的设计

获取原文
获取原文并翻译 | 示例

摘要

Regular eye examinations are required for the early identification of retinal diseases, but the non-availability of medical resources and time are the main concerns in semi-urban areas with the scenario becoming more critical in rural areas. This paper discusses on the design of a cost-effective universal retinal fundus camera and the development of a novel algorithm for the identification of two prominent vision threatening diseases such as Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) employing the state-of-the-art, Convolutional Neural Networks (CNN) for higher classification accuracy. Furthermore, the proposed system is capable of predicting the disease severity level as well as providing suggestions as to whether an ophthalmic consultation is required for the subject under consideration. Experiments were conducted on images from publicly available databases and hospital repository. The condition Normal-DR-AMD and their severity levels were predicted. The performance scores employed were accuracy (95.83 %), sensitivity (0.93) and specificity (0.97), where the values corresponds to the average scores across different datasets. Furthermore, the developed system predicts the retinopathy stages with an average computational time of about 3.98 s. Both the scores clearly indicate the effectiveness of the proposed algorithm both in terms of correctness of the finding and speed of the generating the medical inference. This model can be extremely useful for rural campaign, where availability of trained medical practitioners is less as well as space for setting up and maintaining an eye care facility are not feasible. (C) 2020 Elsevier Ltd. All rights reserved.
机译:早期鉴定视网膜疾病需要常规眼药检查,但医疗资源和时间的不可用是半城区地区的主要问题,在农村地区变得更加重要。本文讨论了一种经济高效的通用视网膜眼镜摄像机的设计以及一种新型算法,用于鉴定两个突出视觉威胁性疾病,如患有国家的糖尿病视网膜病变(DR)和年龄相关的黄斑变性(AMD) -Af-art,卷积神经网络(CNN),用于较高的分类精度。此外,所提出的系统能够预测疾病严重程度以及提供关于所考虑的主题是否需要眼科咨询的建议。实验是在公开可用数据库和医院存储库的图像上进行的。预测条件正常DR-AMD及其严重程度水平。所采用的性能评分是准确性(95.83%),灵敏度(0.93)和特异性(0.97),其中值对应于不同数据集的平均分数。此外,开发系统预测了视网膜病变阶段,平均计算时间约为3.98秒。两种分数都清楚地表明了所提出的算法在产生医疗推理的发现和速度的正确性方面的有效性。这种模型对于农村运动来说非常有用,培训的医生可用性较少,以及建立和维护眼部护理设施的空间是不可行的。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号