首页> 外文期刊>Biomedical signal processing and control >Multiscale receptive field based on residual network for pancreas segmentation in CT images
【24h】

Multiscale receptive field based on residual network for pancreas segmentation in CT images

机译:基于残差网络的多尺度感受野在CT图像胰腺分割中的应用

获取原文
获取原文并翻译 | 示例

摘要

Medical image segmentation has made great achievements. Yet pancreas is a challenging abdominal organ to segment due to the high inter-patient anatomical variability in both shape and volume metrics. The UNet often suffers from pancreas over-segmentation, under-segmentation and shape inconsistency between the predicted result and ground truth. We consider the UNet can not extract more deepen features and rich semantic information which can not distinguish the regions between pancreas and background. From this point, we proposed three cross-domain information fusion strategies to solve above three problems. The first strategy named skip network can efficiently restrain the over-segmentation through cross-domain connection. The second strategy named residual network mainly seeks to solve the under- and over- segmentation problem by cross-domain connecting on a small scale. The third multiscale cross-domain information fusion strategy named multiscale residual network added multiscale convolution operation on second strategy which can learn more accurate pancreas shape and restrain over- and under- segmentation. We performed experiments on a dataset of 82 abdominal contrast-enhanced three dimension computed tomography (3D CT) scans from the National Institutes of Health Clinical Center using 4-fold cross-validation. We report 87.57 +/- 3.26 % of the mean Dice score, which outperforms the state-of-the-art method, producing 7.87 % improvement from the predicted result of original UNet. Our method is not only superior to the other established methods in terms of accuracy and robustness but can also effectively restrain pancreas over-segmentation, under-segmentation and shape inconsistency between the predicted result and ground truth. Our strategies prone to apply to clinical medicine. (C) 2019 Elsevier Ltd. All rights reserved.
机译:医学图像分割取得了巨大的成就。然而,由于形状和体积指标的高患者间解剖变异性,胰腺是难以分割的腹部器官。 UNet经常遭受胰腺过度分割,分割不足以及预测结果与地面真相之间形状不一致的困扰。我们认为UNet无法提取更多的加深特征和丰富的语义信息,无法区分胰腺和背景之间的区域。从这一点出发,我们提出了三种跨域信息融合策略来解决上述三个问题。第一个名为“跳过网络”的策略可以通过跨域连接有效地抑制过度细分。第二种称为残差网络的策略主要是通过小规模的跨域连接来解决分割不足和分割过度的问题。第三种多尺度跨域信息融合策略称为多尺度残差网络,在第二种策略上添加了多尺度卷积运算,可以学习更准确的胰腺形状并抑制过度分割和分割不足。我们对来自国立卫生研究院临床中心的82例腹部对比增强的三维计算机断层扫描(3D CT)扫描数据集进行了实验,使用了4倍交叉验证。我们报告了平均Dice得分的87.57 +/- 3.26%,优于最新方法,比原始UNet的预测结果提高了7.87%。我们的方法不仅在准确性和鲁棒性方面优于其他已建立的方法,而且还可以有效地抑制胰腺的过度分割,分割不足和预测结果与地面真实性之间的形状不一致。我们的策略易于应用于临床医学。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号