首页> 外文期刊>Biomedical signal processing and control >Myoelectric pattern recognition of hand motions for stroke rehabilitation
【24h】

Myoelectric pattern recognition of hand motions for stroke rehabilitation

机译:中风康复手动作的肌电模式识别

获取原文
获取原文并翻译 | 示例

摘要

Stroke is the fourth most common cause of death and can lead complex and long-term disability. In this regard, robotic-based rehabilitation could be an alternative for motion recovery. In this research we study how myoelectric signals (EMG) could be used to identify the fingers/hand motion through pattern recognition techniques. To this purpose, we implemented an experimental protocol on three subject groups: (I) non-stroke without hand impairments, (II) stroke without hand impairments and (III) stroke with hand impairments. The subjects performed a set of hand therapies to improve the range of motion and dexterity. Several methods for feature extraction, ranking and classification from EMG signals were implemented and the performance in the motion identification was compared. Specifically, three ranking methods: Two-sample T-test with feature variances, Separability Index, and the Davies-Boulding Index were used to determine the relevance of the features. As a result, dimensionality reduction was achieved by selecting only 50 features out of 136 with a comparable performance. Also, we compared three different classifiers: LDA, KNN and SVM. On average, the KNN classifier obtained a performance of 0.87 followed by the SVM with 0.82 and LDA with 0.74. Experimental results showed that we are able to identify the hand movements from subjects with a stroke event (group III) with 0.85 of correct classification rate average, which seems a promising approach in robotic-based rehabilitation assistance. (C) 2019 Elsevier Ltd. All rights reserved.
机译:中风是第四大常见死亡原因,可导致复杂和长期的残疾。在这方面,基于机器人的康复可能是运动恢复的替代方法。在这项研究中,我们研究了如何通过模式识别技术将肌电信号(EMG)用于识别手指/手部运动。为此,我们在三个受试者组上实施了实验方案:(I)无手部无卒中;(II)无手部卒中;(III)有手部卒中。受试者进行了一系列手部治疗,以改善运动范围和敏捷度。提出了几种从肌电信号中进行特征提取,排序和分类的方法,并对运动识别的性能进行了比较。具体而言,使用三种排名方法:具有特征差异的两次样本T检验,可分离性指数和戴维斯-布尔丁指数来确定特征的相关性。结果,通过从136个中选择50个具有可比性能的特征来实现降维。此外,我们比较了三种不同的分类器:LDA,KNN和SVM。平均而言,KNN分类器的性能为0.87,紧随其后的SVM为0.82,LDA为0.74。实验结果表明,我们能够从卒中事件(第三组)的受试者中识别出0.85正确分类率平均值的手部运动,这在基于机器人的康复辅助中似乎是一种有前途的方法。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Biomedical signal processing and control》 |2020年第3期|101737.1-101737.11|共11页
  • 作者

  • 作者单位

    Pontificia Univ Javeriana Sch Engn Cr 7 40-62 Bogota Colombia;

    IHP Leibniz Inst Innovat Mikroelekt Technol Pk 25 D-15236 Frankfurt Oder Germany;

    Pontificia Univ Javeriana Dept Ind Engn Cr 7 40-62 Bogota Colombia;

    Pontificia Univ Javeriana Dept Elect Engn Cr 7 40-62 Bogota Colombia;

    Kliniken Schmieder Eichhornstr 68 D-78464 Constance Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号