首页> 外文期刊>Biomedical signal processing and control >Unsupervised segmentation of colonic polyps in narrow-band imaging data based on manifold representation of images and Wasserstein distance
【24h】

Unsupervised segmentation of colonic polyps in narrow-band imaging data based on manifold representation of images and Wasserstein distance

机译:基于图像的流形表示和Wasserstein距离的窄带成像数据中结肠息肉的无监督分割

获取原文
获取原文并翻译 | 示例

摘要

Colorectal cancer (CRC) is one of the most common cancers worldwide and after a certain age (>= 50) regular colonoscopy examination for CRC screening is highly recommended. One of the most prominent precursors of CRC are abnormal growths known as polyps. If a polyp is detected during colonoscopy examination the endoscopist needs to decide whether the polyp should be discarded, removed, or biopsied for further examination. However, the last two options involve some risks for the patient, while not all the polyps are precancerous. On the other hand, discarding a polyp has the risk of failing to detect CRC. We propose an automatic and unsupervised method for the segmentation of colonic polyps for in vivo Narrow-Band-Imaging (NBI) data. Polyp segmentation is a crucial step towards an automatic real-time polyp classification system, that could help the endoscopist in the diagnosis of CRC. The proposed method is a histogram based two-phase segmentation model, involving the Wasserstein distance. These histograms incorporate fused information about suitable image descriptors, namely semi-local texture, geometry and color. To test the proposed segmentation methodology we use a dataset consisting of 86 NBI polyp frames: the 83% sensitivity, 95% specificity, and 93% accuracy suggest a better performance compared to the results obtained with other methods. (C) 2019 Elsevier Ltd. All rights reserved.
机译:大肠癌(CRC)是世界上最常见的癌症之一,并且在一定年龄(> = 50)之后,强烈建议定期进行结肠镜检查以进行CRC筛查。 CRC最突出的前体之一是异常生长,称为息肉。如果在结肠镜检查期间发现息肉,内镜医师需要决定是否应丢弃,取出息肉或对其进行活检以进一步检查。但是,最后两种选择对患者有一定的风险,而并非所有息肉都是癌前病变。另一方面,丢弃息肉可能会导致无法检测到CRC。我们为体内窄带成像(NBI)数据提出了一种自动和无监督的结肠息肉分割方法。息肉分割是朝着实时实时息肉分类系统迈出的关键一步,这可以帮助内镜医师对CRC进行诊断。所提出的方法是基于直方图的两阶段分割模型,涉及Wasserstein距离。这些直方图包含有关合适图像描述符的融合信息,即半局部纹理,几何形状和颜色。为了测试建议的分割方法,我们使用了一个由86个NBI息肉帧组成的数据集:与其他方法相比,其83%的敏感性,95%的特异性和93%的准确性表明了更好的性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号