首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >Automatic Segmentation of Polyps in Colonoscopic Narrow-Band Imaging Data
【24h】

Automatic Segmentation of Polyps in Colonoscopic Narrow-Band Imaging Data

机译:结肠镜检查窄带成像数据中息肉的自动分割

获取原文
获取原文并翻译 | 示例

摘要

Colorectal cancer is the third most common type of cancer worldwide. However, this disease can be prevented by detection and removal of precursor adenomatous polyps during optical colonoscopy (OC). During OC, the endoscopist looks for colon polyps. While hyperplastic polyps are benign lesions, adenomatous polyps are likely to become cancerous. Hence, it is a common practice to remove all identified polyps and send them to subsequent histological analysis. But removal of hyperplastic polyps poses unnecessary risk to patients and incurs unnecessary costs for histological analysis. In this paper, we develop the first part of a novel optical biopsy application based on narrow-band imaging (NBI). A barrier to an automatic system is that polyp classification algorithms require manual segmentations of the polyps, so we automatically segment polyps in colonoscopic NBI data. We propose an algorithm, Shape-UCM, which is an extension of the gPb-OWT-UCM algorithm, a state-of-the-art algorithm for boundary detection and segmentation. Shape-UCM solves the intrinsic scale selection problem of gPb-OWT-UCM by including prior knowledge about the shape of the polyps. Shape-UCM outperforms previous methods with a specificity of 92%, a sensitivity of 71%, and an accuracy of 88% for automatic segmentation of a test set of 87 images.
机译:大肠癌是全球第三大最常见的癌症。但是,可以通过在光学结肠镜检查(OC)期间检测和去除前体腺瘤性息肉来预防这种疾病。在OC期间,内镜医师会寻找结肠息肉。尽管增生性息肉是良性病变,但腺瘤性息肉很可能会癌变。因此,通常的做法是去除所有已识别的息肉,并将其发送到随后的组织学分析中。但是,去除增生性息肉会给患者带来不必要的风险,并为组织学分析带来不必要的成本。在本文中,我们开发了一种基于窄带成像(NBI)的新型光学活检应用程序的第一部分。自动化系统的一个障碍是息肉分类算法需要对息肉进行手动分割,因此我们在结肠镜NBI数据中自动分割息肉。我们提出了Shape-UCM算法,它是gPb-OWT-UCM算法的扩展,后者是用于边界检测和分割的最新算法。 Shape-UCM通过包含有关息肉形状的先验知识,解决了gPb-OWT-UCM固有的标度选择问题。 Shape-UCM以92%的特异性,71%的灵敏度和88%的准确度(优于之前的方法)对87张图像的测试集进行自动分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号