首页> 外文期刊>Biomedical signal processing and control >EEG mobility artifact removal for ambulatory epileptic seizure prediction applications
【24h】

EEG mobility artifact removal for ambulatory epileptic seizure prediction applications

机译:脑电活动伪影去除为动态癫痫发作预测应用

获取原文
获取原文并翻译 | 示例

摘要

Mobile monitoring of electroencephalogram (EEG) signals is prone to different sources of artifacts. Most importantly, motion-related artifacts present a major challenge hindering the clean acquisition of EEG data as they spread all over the scalp and across all frequency bands. This leads to additional complexity in the development of neurologically-oriented mobile health solutions. Among the top five most common neurological disorders, epilepsy has increasingly relied on EEG for diagnosis. Separate methods have been used to classify EEG segments in the context of epilepsy while reducing the existing mobility artifacts. This work specifically devises an approach to remove motion-related artifacts in the context of epilepsy. The proposed approach first includes the recording of EEG signals using a wearable EEG headset. The recorded signals are then colored by some motion artifacts generated in a lab-controlled experiment. This stage is followed by temporal and spectral characterization of the signals and artifact removal using independent component analysis (ICA). The proposed approach is tested using real clinical EEG data and results showed an average increase in accuracy of similar to 9% in seizure detection and similar to 24% in prediction. (C) 2019 Elsevier Ltd. All rights reserved.
机译:脑电图(EEG)信号的移动监控容易出现伪影的不同来源。最重要的是,与运动有关的伪影面临着重大挑战,因为它们散布在头皮上和所有频段上,阻碍了EEG数据的清晰采集。这导致面向神经学的移动健康解决方案的开发变得更加复杂。在最常见的五种神经系统疾病中,癫痫病越来越多地依靠脑电图进行诊断。在癫痫的背景下,已经使用了单独的方法对EEG段进行分类,同时减少了现有的活动性伪像。这项工作专门设计了一种方法,可以在癫痫的情况下消除与运动有关的伪影。所提出的方法首先包括使用可穿戴式EEG耳机记录EEG信号。然后,记录的信号会通过在实验室控制的实验中生成的一些运动伪影进行着色。此阶段之后是信号的时间和频谱表征以及使用独立分量分析(ICA)去除伪影。使用实际的临床EEG数据对提出的方法进行了测试,结果显示,癫痫发作检测的平均准确率提高了约9%,而预测值则提高了约24%。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号