首页> 外文期刊>Biomedical signal processing and control >Multiresolution approach for artifacts removal and localization of seizure onset zone in epileptic EEG signal
【24h】

Multiresolution approach for artifacts removal and localization of seizure onset zone in epileptic EEG signal

机译:癫痫脑电信号中癫痫发作区的伪影去除和定位的多分辨率方法

获取原文
获取原文并翻译 | 示例

摘要

Epilepsy is major challenge to medical fraternity. This research article has come up with a novel method for pre-processing of Epileptic Electroencephalogram (EEG) signals for artifact removal and localizing the epileptic seizure onset zone. The presence of physiological artifacts alters the true EEG information which can considerably affect the epileptic seizure classification accuracy. Hence, it is of prime importance to eliminate these contaminations. The analysis of epileptic EEG signal requires localization of the seizure onset zone in the epileptic EEG signal. The objective of this paper is to present an approach to eliminate physiological artifacts and to localize the epileptic region. This paper suggests a hybrid model based on Multiresolutional Analysis and Adaptive Filtering [MRAF]. Initially the EEG signal is decomposed using Discrete Wavelet Transform (DWT) which effectively helps to localize the epileptic region. Multiresolutional soft thresholding is applied to these decomposed wavelet components to remove the abrupt variations. Further, adaptive filtering is applied to remove the low frequency components which represents physiological artifacts. It is observed that the MRAF method effectively eliminate physiological artifacts and localizes the epileptic seizure zone present in the seizure EEG information. The accuracy of the proposed MRAF model is found to be 86.66% with a precision of 88.88%, since it is able to retain most of the seizure signal present in the tested datasets. (C) 2019 Elsevier Ltd. All rights reserved.
机译:癫痫病是医学界的主要挑战。这篇研究文章提出了一种新颖的方法,用于预处理癫痫脑电图(EEG)信号以去除伪影并定位癫痫发作发作区。生理伪影的存在会改变真实的EEG信息,从而严重影响癫痫发作分类的准确性。因此,消除这些污染至关重要。癫痫脑电信号的分析需要在癫痫脑电信号中定位癫痫发作区。本文的目的是提出一种消除生理伪影并定位癫痫区域的方法。本文提出了一种基于多分辨率分析和自适应滤波[MRAF]的混合模型。最初,EEG信号使用离散小波变换(DWT)进行分解,这可以有效地帮助定位癫痫区域。将多分辨率软阈值处理应用于这些分解后的小波分量,以消除突变。此外,应用自适应滤波以去除代表生理伪影的低频分量。可以看出,MRAF方法可以有效消除生理伪影,并定位癫痫发作EEG信息中存在的癫痫发作区域。发现建议的MRAF模型的准确性为86.66%,精度为88.88%,因为它能够保留测试数据集中存在的大多数癫痫发作信号。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号