首页> 外文期刊>Biomedical signal processing and control >On the design of automatic voice condition analysis systems. Part Ⅱ: Review of speaker recognition techniques and study on the effects of different variability factors
【24h】

On the design of automatic voice condition analysis systems. Part Ⅱ: Review of speaker recognition techniques and study on the effects of different variability factors

机译:关于语音条件自动分析系统的设计。第二部分:说话人识别技术综述及不同变异因素的影响研究

获取原文
获取原文并翻译 | 示例

摘要

This is the second of a two-part series devoted to the automatic voice condition analysis of voice pathologies, being a direct continuation to the paper On the design of automatic voice condition analysis systems. Part 1: review of concepts and an insight to the state of the art. The aim of this study is to examine several variability factors affecting the robustness of systems that automatically detect the presence of voice pathologies by means of audio registers. Multiple experiments are performed to test out the influence of the speech task, extralinguistic aspects (such as sex), the acoustic features and the classifiers in their performance. Some experiments are carried out using state-of-the-art classification methodologies often employed in speaker recognition. In order to evaluate the robustness of the methods, testing is repeated across several corpora with the aim to create a single system integrating the conclusions obtained previously. This system is later tested under cross-dataset scenarios in an attempt to obtain more realistic conclusions. Results identify a reduced subset of relevant features, which are used in a hierarchical-like scenario incorporating information of different speech tasks. In particular, for the experiments carried out using the Saarbruecken voice dataset, the area under the ROC curve of the system reached 0.88 in an intra-dataset setting and ranged from 0.82 to 0.94 in cross-dataset scenarios. These results let us open a discussion about the suitability of these techniques to be transferred to the clinical setting. (C) 2018 Elsevier Ltd. All rights reserved.
机译:这是一个分为两部分的系列文章的第二部分,该系列致力于语音病理学的自动语音条件分析,是对自动语音条件分析系统设计论文的直接延续。第1部分:概念回顾和对最新技术的见识。这项研究的目的是研究影响可变性因素的几个可变性因素,这些可变性因素通过音频寄存器自动检测语音病理的存在。进行了多次实验,以测试语音任务,语言外方面(例如性别),声学特征和分类器对表演的影响。一些实验是使用说话人识别中经常使用的最新分类方法进行的。为了评估该方法的鲁棒性,在多个语料库中重复测试,目的是创建一个集成了先前获得的结论的单一系统。该系统后来在跨数据集方案下进行了测试,以期得出更现实的结论。结果确定了相关特征的缩小子集,这些子集在合并了不同语音任务信息的类似分层的场景中使用。特别是,对于使用Saarbruecken语音数据集进行的实验,在内部数据集设置中,系统的ROC曲线下的面积达到0.88,在跨数据集场景中,范围在0.82至0.94之间。这些结果使我们开始讨论这些技术是否适用于临床环境。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号