首页> 外文期刊>Biomedical signal processing and control >Divide-and-conquer muscle synergies: A new feature space decomposition approach for simultaneous multifunction myoelectric control
【24h】

Divide-and-conquer muscle synergies: A new feature space decomposition approach for simultaneous multifunction myoelectric control

机译:分而治之的肌肉协同作用:一种同时进行多功能肌电控制的新特征空间分解方法

获取原文
获取原文并翻译 | 示例

摘要

Simultaneous multifunctional control based on surface electromyography (sEMG) is a key issue for natural and intuitive use of upper-limb prostheses in clinical and commercial applications. However, muscle synergies make simultaneous multifunctional control technologically challenging. In this study, we proposed a new feature space decomposition approach to alleviate the difficulty brought by muscle synergies for simultaneous control of hand and wrist movements. In the feature space decomposition approach, Gaussian mixture modeling (GMM) clustering is used to split the whole feature space into a set of Gaussian clusters, each consisting of samples with similar characteristics, to "divide-and-conquer" the complex muscle synergies. Then, a hybrid simultaneous control strategy, which consists of switch control of hand movements and proportional control of wrist movements, is performed in each cluster, instead of in the whole feature space. In the experimental study, sEMG signals were recorded during static and dynamic muscle contraction involving 2-dimensional wrist rotation (flexion-extension and radial-ulnar deviation) and 3 basic hand movement patterns (relaxing, fisting and grasping). Results show that, the new feature space decomposition approach can increase the accuracy for switch control of hand movement patterns from 90.10% to 96.62%, and can improve the correlation between true and predicted values of wrist rotation angular velocity from 0.71 to 0.84 (for wrist flexion-extension) and from 0.67 to 0.82 (for wrist radial-ulnar deviation) for proportional control of wrist. The proposed feature space decomposition approach has the potential to yield simultaneous multifunctional control for sEMG-based upper-limb prosthesis. (C) 2018 Elsevier Ltd. All rights reserved.
机译:基于表面肌电图(sEMG)的同时多功能控制是在临床和商业应用中自然而直观地使用上肢假体的关键问题。但是,肌肉协同作用使同时进行的多功能控制在技术上具有挑战性。在这项研究中,我们提出了一种新的特征空间分解方法,以减轻肌肉协同作用同时控制手和腕部运动带来的困难。在特征空间分解方法中,使用高斯混合建模(GMM)聚类将整个特征空间划分为一组高斯聚类,每个聚类由具有相似特征的样本组成,以“划分并征服”复杂的肌肉协同作用。然后,在每个群集中而不是在整个特征空间中执行混合同时控制策略,该策略由手部运动的开关控制和腕部运动的比例控制组成。在实验研究中,在涉及二维手腕旋转(屈伸和radial尺间偏斜)和3种基本手部运动模式(放松,握拳和抓握)的静态和动态肌肉收缩过程中记录了sEMG信号。结果表明,新的特征空间分解方法可以将手运动模式的切换控制精度从90.10%提高到96.62%,并且可以将手腕旋转角速度的真实值和预测值之间的相关性从0.71提高到0.84(对于手腕屈伸)和0.67到0.82(用于腕部radial尺间偏斜)以按比例控制手腕。所提出的特征空间分解方法具有产生基于sEMG的上肢假体的同时多功能控制的潜力。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号