首页> 外文期刊>Biomedical signal processing and control >Beating-heart robotic surgery using bilateral impedance control: Theory and experiments
【24h】

Beating-heart robotic surgery using bilateral impedance control: Theory and experiments

机译:使用双侧阻抗控制的心脏跳动机器人手术:理论与实验

获取原文
获取原文并翻译 | 示例

摘要

A bilateral impedance controller is presented to enable robot-assisted surgery of a beating heart. For this purpose, two desired impedance models are designed and realized for the master and slave robots interacting with the operator (surgeon) and the environment (heart tissue), respectively. The impedance models are designed such that (a) the slave robot complies with the oscillatory motion of the beating heart and (b) the surgeon perceives the non-oscillatory portion of the stave/heart contact force at the master robot implying arrested-heart surgery. These performance goals are achieved via appropriate adjustment of the impedance model parameters without any measurement or estimation of heart motion. Two nonlinear robust adaptive controllers are proposed for the master and slave robots to track their corresponding desired impedance responses in the Cartesian space. The stability, tracking convergence and the robustness against parametric and non-parametric modeling uncertainties are proven using the Lyapunov theorem and based on two types of adaptation laws. The stability of impedance models and nonlinear tele-operation system can enhance the patient's safety during the robotic surgery. Experimental results show that the proposed controller compensates for the beating motion and provides smooth force feedback to the surgeon. (C) 2018 Elsevier Ltd. All rights reserved.
机译:提出了一种双边阻抗控制器,以使机器人能够对跳动的心脏进行手术。为此,分别针对与操作员(外科医生)和环境(心脏组织)相互作用的主从机器人设计和实现了两个所需的阻抗模型。阻抗模型的设计应使(a)从动机器人遵守跳动的心脏的振荡运动,并且(b)外科医生在主机器人处感知到梯级/心脏接触力的非振荡部分,这意味着心脏骤停手术。这些性能目标是通过适当调整阻抗模型参数而实现的,无需进行任何心脏运动的测量或估计。提出了两个非线性鲁棒自适应控制器,供主从机器人跟踪在笛卡尔空间中它们相应的所需阻抗响应。使用Lyapunov定理并基于两种类型的适应律,证明了对参数和非参数模型不确定性的稳定性,跟踪收敛性和鲁棒性。阻抗模型和非线性遥操作系统的稳定性可以提高机器人手术过程中患者的安全性。实验结果表明,所提出的控制器可以补偿跳动,并为外科医生提供平稳的力反馈。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号