首页> 外文期刊>Biomedical signal processing and control >A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals
【24h】

A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals

机译:神经网络分类器用于基于生理信号的汽车驾驶员压力水平分析的比较评估

获取原文
获取原文并翻译 | 示例

摘要

Automotive driving under unacceptable levels of accumulated stress deteriorates their vehicle control and risk-assessment capabilities often inviting road accidents. Design of a safety-critical wearable driver assist system for continuous stress level monitoring requires development of an intelligent algorithm capable of recognizing the drivers' affective state and cumulatively account for increasing stress level. Task induced modifications in rhythms of physiological signals acquired during a real-time driving are clinically proven hallmarks for quantitative analysis of stress and mental fatigue. The present work proposes a neural network driven based solution to learning driving-induced stress patterns and correlating it with statistical, structural and time-frequency changes observed in the recorded biosignals. Physiological signals like Galvanic Skin Response (GSR) and Photoplethysmography (PPG) were selected for the present work. A comprehensive performance analysis on the selected neural network configurations (both Feed forward and Recurrent) concluded that Layer Recurrent Neural Networks are most optimal for stress level detection. This evaluation achieved an average precision of 89.23%, sensitivity of 88.83% and specificity of 94.92% when tested over 19 automotive drivers. The biofeedback inferred about the driver's ongoing physiological state using this neural network based inference engine would provide crucial information to on-board safety embedded systems to activate accordingly. It is envisaged that such a driver-centric safety system will help save precious lives by way of providing fast and credible real-time alerts to drivers and their coupled cars.
机译:在不可接受的累积压力水平下驾驶汽车会降低其车辆控制能力和风险评估能力,经常引发交通事故。设计用于持续压力水平监控的安全性至关重要的可穿戴驾驶员辅助系统,需要开发一种智能算法,该算法能够识别驾驶员的情感状态并累计解决不断增加的压力水平。任务诱导的实时驾驶过程中获取的生理信号节律的改变是用于定量分析压力和精神疲劳的临床证明的标志。本工作提出了一种基于神经网络驱动的解决方案,用于学习驾驶引起的压力模式,并将其与记录的生物信号中观察到的统计,结构和时频变化相关联。生理信号,如皮肤电反应(GSR)和光电容积描记术(PPG)被选择用于当前工作。对选定的神经网络配置(前馈和递归)进行全面的性能分析后得出结论,层递归神经网络最适合用于应力水平检测。在19个汽车驾驶员中进行测试时,该评估的平均精度为89.23%,灵敏度为88.83%,特异性为94.92%。使用基于神经网络的推理引擎推断驾驶员正在进行的生理状态的生物反馈将为车载安全嵌入式系统提供关键信息,从而相应地激活。可以设想,这种以驾驶员为中心的安全系统将通过向驾驶员及其相连的汽车提供快速,可靠的实时警报来帮助挽救宝贵的生命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号