首页> 外文期刊>Biomedical signal processing and control >Classification of ECG arrhythmia by a modular neural network based on Mixture of Experts and Negatively Correlated Learning
【24h】

Classification of ECG arrhythmia by a modular neural network based on Mixture of Experts and Negatively Correlated Learning

机译:基于专家和负相关学习的模块化神经网络对心电图心律失常进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel ECG arrhythmia classification method using the complementary features of Mixture of Experts (ME) and Negatively Correlated Learning (NCL). Negative Correlation Learning and Mixture of Experts methods utilize different error functions for simultaneous training of negatively correlated Neural Networks. The capability of a control parameter for NCL is incorporated in the error function of ME, which enables the training algorithm of ME to establish a balance in bias-variance-covariance trade-offs. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed classification method not only preserves the advantages and alleviates the disadvantages of its basis approaches, but also offering significantly improved performance over the original methods.
机译:在本文中,我们提出了一种新颖的ECG心律失常分类方法,该方法利用专家混合(ME)和负相关学习(NCL)的互补功能。负相关学习和专家混合方法利用不同的误差函数来同时训练负相关的神经网络。 NCL的控制参数功能已纳入ME的误差函数中,这使ME的训练算法能够在偏差-方差-协方差折衷之间建立平衡。从MIT-BIH心律失常数据库中选择ECG记录作为测试数据。可以看出,提出的分类方法不仅保留了其基本方法的优点,而且减轻了其缺点,而且与原始方法相比,其性能得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号